Trophic position influences the efficacy of seabirds as metal biovectors.

Proc Natl Acad Sci U S A

Paleoecological Environmental Assessment and Research Laboratory, Department of Biology, Queen's University, Kingston, ON, Canada.

Published: June 2010

Seabirds represent a well documented biological transport pathway of nutrients from the ocean to the land by nesting in colonies and providing organic subsidies (feces, carcasses, dropped food) to these sites. We investigated whether seabirds that feed at different trophic levels vary in their potency as biovectors of metals, which can bioaccumulate through the marine foodweb. Our study site, located on a small island in Arctic Canada, contains the unique scenario of two nearby ponds, one of which receives inputs almost exclusively from upper trophic level piscivores (Arctic terns, Sterna paradisaea) and the other mainly from lower trophic level molluscivores (common eiders, Somateria mollissima). We used dated sediment cores to compare differences in diatoms, metal concentrations and also stable isotopes of nitrogen (delta(15)N), which reflect trophic position. We show that the seabirds carry species-specific mixtures of metals that are ultimately shunted to their nesting sites. For example, sediments from the tern-affected pond recorded the highest levels of delta(15)N and the greatest concentrations of metals that are known to bioaccumulate, including Hg and Cd. In contrast, the core from the eider-affected site registered lower delta(15)N values, but higher concentrations of Pb, Al, and Mn. These metals have been recorded at their greatest concentrations in eiders relative to other seabirds, including Arctic terns. These data indicate that metals may be used to track seabird population dynamics, and that some metal tracers may even be species-specific. The predominance of large seabird colonies on every continent suggests that similar processes are operating along coastlines worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890848PMC
http://dx.doi.org/10.1073/pnas.1001333107DOI Listing

Publication Analysis

Top Keywords

trophic position
8
metals bioaccumulate
8
trophic level
8
arctic terns
8
greatest concentrations
8
concentrations metals
8
trophic
5
seabirds
5
metals
5
position influences
4

Similar Publications

The conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.

View Article and Find Full Text PDF

Trophic magnification rates of eighteen trace elements in freshwater food webs.

Sci Total Environ

December 2024

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada. Electronic address:

Trace elements play diverse roles in animal physiology ranging from essential micronutrients to potent toxicants. Despite animals accumulating many trace elements through their diets, relationships between trophic positions and biological concentrations of most trace elements remain poorly described. We report trophic transfer rates of Al, As, Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr, Ti, Tl, U, V, and Zn from 31 freshwaters located in distinct biogeographic regions.

View Article and Find Full Text PDF

The red panda (Ailurus), a rare and endangered mammal native to the Himalayan-Hengduan Mountains, has a specialized bamboo diet. Combining morphological and genomic evidence, red pandas have been classified as and . However, previous studies focused on ecological aspects such as foraging behaviors, habitat use and threats within specific distributions; hence, there is still a gap in quantitative comparative studies on the trophic niches of these two species.

View Article and Find Full Text PDF

Trait variation in predator populations can influence the outcome of predator-prey dynamics, with consequences for trophic dynamics and ecosystem functioning. However, the influence of prey trait variation on the impacts of predators is not well understood, especially for introduced predators where variation in prey can shape invasion outcomes. In this study, we investigated if intra-specific differences in vertical position of influenced the impacts of the invasive zooplankton predator, on plankton communities.

View Article and Find Full Text PDF

Trophic ecology of groundfishes in nearshore areas of the Gulf of Maine.

J Fish Biol

December 2024

Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, USA.

Ecosystem management requires an integrated understanding of ecological interactions. In the Gulf of Maine (GoM), trophic information pertaining to commercially important groundfishes and nearshore prey communities is lacking. We characterized nearshore communities and groundfish diets using data collected from nearshore surveys (864 bottom trawls and 3638 stomach samples of six groundfish species) conducted biannually (spring and fall) in Midcoast Maine and Penobscot Bay from 2012 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!