GABA receptors and prepulse inhibition of acoustic startle in mice and rats.

Eur J Neurosci

Department of Psychology, Centre for Biological Timing and Cognition, University of Toronto, Toronto, Canada M5S 3G3.

Published: June 2010

The acoustic startle reflex is strongly inhibited by a moderate-intensity acoustic stimulus that precedes the startling stimulus by roughly 10-1000 ms (prepulse inhibition, PPI). At long interstimulus intervals (ISIs) of 100-1000 ms, PPI in rats is reduced by the muscarinic receptor antagonist scopolamine. Here, we studied the role of GABA receptors in PPI at full ISI ranges in both mice and rats. In B6 mice, PPI begins and ends at shorter ISIs (4 and 1000 ms, respectively) than in Wistar rats (8 and 5000 ms). The GABA(A) antagonist bicuculline (1 mg/kg i.p.) reduced PPI at ISIs near the peak of PPI in both rats and mice. The GABA(B) antagonist phaclofen (10 or 30 mg/kg i.p. in rats or mice, respectively) reduced PPI only at long ISIs, similar to the effects of the muscarinic antagonist scopolamine (1 mg/kg i.p.). The effects of phaclofen and scopolamine were additive in rats, suggesting independent effects of GABA(B) and muscarinic receptors. Patch-clamp recordings of startle-mediating PnC (nucleus reticularis pontis caudalis) giant neurons in rat slices show that EPSCs evoked by either trigeminal or auditory fiber stimulation were inhibited by the GABA(A/C) agonist muscimol or the GABA(B) agonist baclofen via postsynaptic mechanisms. Hyperpolarization of PnC neurons by muscimol was reversed with bicuculline, indicating that postsynaptic GABA(A) receptors strongly inhibit PnC giant neurons needed for startle. Therefore, GABA receptors on PnC giant neurons mediate a substantial part of PPI, with GABA(A) receptors contributing at the peak of PPI, and GABA(B) receptors adding to muscarinic effects on PPI at long ISIs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2010.07236.xDOI Listing

Publication Analysis

Top Keywords

gaba receptors
12
ppi long
12
rats mice
12
giant neurons
12
ppi
10
prepulse inhibition
8
acoustic startle
8
mice rats
8
ppi rats
8
antagonist scopolamine
8

Similar Publications

Tandospirone prevents anesthetic-induced respiratory depression through 5-HT receptor activation in rats.

Sci Rep

January 2025

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.

Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.

View Article and Find Full Text PDF

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Neuroscience Institute at JFK Medical Center, Edison, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA.

Article Synopsis
  • Disease-associated microglia (DAM) play a critical role in Alzheimer's disease (AD), impacting neuroinflammation and synapse loss, but their activation mechanisms remain unclear beyond traditional classifications.
  • Researchers studied GABA receptor 1 (GABAR1) in microglia from human and mouse models, using various experimental techniques to explore its role in AD pathology, particularly focusing on sleep impairment and microglial behavior.
  • The study revealed that loss of GABAR1 is linked to increased AD pathology, and restoring GABAR1 signaling improved microglial function and reduced AD-related symptoms in experimental models, highlighting its potential as a therapeutic target.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.

Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!