1. Previous work indicates that agonists of ghrelin receptors can act within the spinal cord to stimulate autonomic outputs to the colorectum and to blood vessels. Because of the close relationship between colorectal and urinary bladder control, we have investigated whether ghrelin receptor agonists also stimulate spinal centres that influence the bladder. 2. The ghrelin receptor agonist capromorelin (10 mg/kg), injected intravenously in anaesthetized male rats, disrupted the ongoing cycle of micturition reflexes and caused phasic oscillations in pressure that averaged approximately 20 mmHg. Fluid output from the bladder was diminished. The effects of capromorelin were inhibited by hexamethonium (10 mg/kg bolus followed by 4 mg/kg per h infusion, i.v.) and were further reduced by atropine (5 mg/kg bolus followed by 2.5 mg/kg per h infusion, i.v.). Capromorelin (250 microg) injected directly into the spinal cord at the lumbosacral level also increased contractile activity of the bladder. However, capromorelin, up to 0.1 mmol/L, had no effect on the tension of isolated muscle strips from the bladder. Effects of intravenous capromorelin (10 mg/kg) on bladder pressure were still observed after the descending pathways in the spinal cord were disrupted at the thoracic level. 3. In situ hybridization studies revealed ghrelin receptor gene expression in neurons of the autonomic intermediolateral (IML) cell columns. Following a series of micturition reflexes elicited by infusion of saline into the bladder, the immediate early gene product c-Fos was observed in neurons of the lumbosacral IML and approximately 20% of these also expressed ghrelin receptor gene transcripts. 4. It is concluded that ghrelin receptors are expressed by lumbosacral autonomic preganglionic neurons of the micturition reflex pathways and that ghrelin receptor agonists stimulate these neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.2010.05409.x | DOI Listing |
Clin Nutr
December 2024
Department of Cellular - Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Introduction: Obesity is a multifactorial disease caused by an interaction between genetic, environmental and behavioral factors. Polymorphisms of the two genes Circadian Locomotor Output Cycles Kaput (CLOCK) rs1801260 and Melanocortin-4-receptor (MC4R) rs17782313, are associated with obesity. Knowledge is limited on the interaction between CLOCK, MC4R and obesity.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:
Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.
View Article and Find Full Text PDFPeptides
January 2025
Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China. Electronic address:
Delayed wound healing is a complication of diabetes mellitus and can lead to infection, sepsis, and amputation. Despite the currently available treatments, the global burden of diabetes-related wounds is growing; thus, more effective therapy for diabetic wounds is urgently needed. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a 28-amino acid peptide hormone.
View Article and Find Full Text PDFEndocrinology
January 2025
Grupo de Neurofisiología- Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina.
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!