Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells.

Photochem Photobiol

Laboratory of Pharmacology, NIEHS, Research Triangle Park, NC, USA.

Published: January 2011

All-trans-retinal is the precursor of A2E, a fluorophore within lipofuscin, which accumulates in human retinal pigment epithelial (hRPE) cells and contributes to age-related macular degeneration. Here we have compared the in vitro dark cytotoxicity and visible-light-mediated photoreactivity of all-trans-retinal and A2E in hRPE cells. All-trans-retinal caused distinct cytotoxicity in hRPE cells measured with cell metabolic activity (MTS) and lactate dehydrogenase release assays. Significant increases in intracellular oxidized glutathione (GSSG), extracellular GSH and GSSG levels and lipid hydroperoxide production were observed in cells incubated in the dark with 25 and 50 microM all-trans-retinal. Light modified all-trans-retinal's harmful action and decreased extracellular glutathione and hydroperoxide levels. A2E (<25 microM) did not affect cell metabolism or cytoplasmic membrane integrity in the dark or when irradiated. 25 microM A2E raised the intracellular GSSG level in hRPE cells to a much smaller extent than 25 microM all-trans-retinal. A2E did not induce glutathione efflux or hydroperoxide generation in the dark or after irradiation. These studies support our previous conclusions that although A2E may be harmful at high concentrations or when oxidized, its phototoxic properties are insignificant compared to those of all-trans-retinal. The endogenous production of A2E may serve as a protective mechanism to prevent damage to the retina by free all-trans-retinal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910196PMC
http://dx.doi.org/10.1111/j.1751-1097.2010.00750.xDOI Listing

Publication Analysis

Top Keywords

hrpe cells
12
human retinal
8
retinal pigment
8
pigment epithelial
8
cells all-trans-retinal
8
all-trans-retinal
5
cells
5
comparison a2e
4
a2e cytotoxicity
4
cytotoxicity phototoxicity
4

Similar Publications

Article Synopsis
  • Regulation of visual system function relies on precise gene regulation, with dysregulation of miRNAs like MIR-96 linked to eye disorders, including diabetic retinopathy (DR) and glaucoma.
  • MIR-96, found in the retina, affects inflammatory and insulin signaling pathways and its role in gene expression was studied by overexpressing it in human retinal pigment epithelial cells, revealing varying effects on target gene expression.
  • The results indicated that changes in the expression of IRS2, a key gene, are connected to disrupted retinal insulin signaling in DR, suggesting that the IRS/PI3K/AKT/VEGF pathway could be a potential treatment target for diabetic complications in the eye.
View Article and Find Full Text PDF

Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy.

Exp Eye Res

November 2024

Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China. Electronic address:

Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated.

View Article and Find Full Text PDF

Purpose: To investigate the short-term effects of low-level lasers (LLLs; also known as low-power laser therapy) on the structure, genetic, and phenotype of cultured human retinal pigment epithelial (hRPE) cells from both adult and neonatal sources.

Methods: Cultivated adult and neonatal hRPE cells were irradiated with two types of LLL (630 nm and 780 nm), 1 min daily for five consecutive days.

Results: An increase in doubling time was observed in 630 nm-irradiated adult hRPE cells ( = 0.

View Article and Find Full Text PDF

Aim: To examine the regulatory role of microRNA-204 (miR-204) on silent information regulator 1 (SIRT1) and vascular endothelial growth factor (VEGF) under high-glucose-induced metabolic memory in human retinal pigment epithelial (hRPE) cells.

Methods: Cells were cultured with either normal (5 mmol/L) or high D-glucose (25 mmol/L) concentrations for 8d to establish control and high-glucose groups, respectively. To induce metabolic memory, cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!