Conventional eye drops show relatively low bioavailability due to poor precorneal contact time. In situ hydrogels are of great importance in providing sustained ocular drug delivery. By exhibiting elastic properties they resist ocular drainage of the drug leading to longer contact times. In the present study an in situ gelling thermoreversible mucoadhesive gel was formulated of an antibacterial agent, Moxifloxacin HCl using a combination of poloxamer 407 and poloxamer 188 with different mucoadhesive polymers such as Xanthan gum and Sodium alginate with a view to increase gel strength and bioadhesion force and thereby increased precorneal contact time and bioavailability of the drug. Formulations were evaluated for physical parameters like clarity, pH, spreadability, drug content, gelation temperature, gel strength, bioadhesion force and in vitro drug release study. Formulations were found transparent, uniform in consistency and had good spreadability within a pH range of 6.8 to 7.4. A satisfactory bioadhesion (3298 to 4130 Dyne/cm2) on the sheeps corneal surface and good gel strength (95 to 128 sec) was also observed. As the concentration of mucoadhesive polymers in the gel formulation increased, the rate of drug release decreased. The order of drug release was in order: Xanthan gum > Sodium alginate. It was concluded that a thermoreversible in situ gel of Moxifloxacin HCl can be formulated by combining with mucoadhesive polymers and used effectively as safe and sustained ocular drug delivery. This combination provided greater bioadhesion force and gel strength as compared to the thermoreversible polymers i.e., poloxamer 407 (PF 127) or 188 (PF 68) when used alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156720110791560928 | DOI Listing |
Narra J
December 2024
Department of Pharmacochemistry, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
Gelatin is a versatile substance extensively used in medical and pharmaceutical industries for many applications, including capsule shells, X-ray film, infusion for plasma substitute, and the fabricating of artificial tissue. Fish scale gelatin is a profitable alternative source as a halal material despite its inferior quality. An addition of phenolic cross-linker may enhance the qualities of fish scale gelatin.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
The effects of static magnetic field-assisted freezing (MF) on the structural and functional characteristics of Litopenaeus vannamei myofibrillar protein (MP) at various temperatures (-35 ∼ -20 °C) were examined to assess its influence on MP and its energy-saving potential. The results indicated that -35 °C MF (MF-35) exhibited greater solubility and lower turbidity than -35 °C immersion freezing (IF-35), suggesting that MF-35 inhibited MP aggregation. MF-35 prevented the reduction in fluorescence intensity and α-helix content, protecting the MP tertiary and secondary structures.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China.
Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Bavaria, Germany.
We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!