The morphology of a series of linear poly(ethylene-co-acrylic acid) zinc-neutralized ionomers with either precisely or randomly spaced acid groups was investigated using X-ray scattering, differential scanning calorimetry (DSC), and scanning transmission electron microscopy (STEM). Scattering from semicrystalline, precise ionomers has contributions from acid layers associated with the crystallites and ionic aggregates dispersed in the amorphous phase. The precisely controlled acid spacing in these ionomers reduces the polydispersity in the aggregate correlation length and yields more intense, well-defined scattering peaks. Remarkably, the ionic aggregates in an amorphous, precise ionomer with 22 mol % acid and 66% neutralization adopt a cubic lattice; this is the first report of ionic aggregate self-assembly onto a lattice in an ionomer with an all-carbon backbone. Aggregate size is insensitive to acid content or neutralization level. As the acid content increases from 9.5 to 22 mol % at approximately 75% neutralization, the number density of aggregates increases by approximately 5 times, suggesting that the ionic aggregates become less ionic with increasing acid content.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja101991dDOI Listing

Publication Analysis

Top Keywords

ionic aggregates
12
acid content
12
acid
9
polyethylene-co-acrylic acid
8
ionic
5
nanoscale morphology
4
morphology precisely
4
precisely sequenced
4
sequenced polyethylene-co-acrylic
4
acid zinc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!