We have used the GABA-A antagonist picrotoxin (PTX) to investigate whether chronic disinhibition, leading to intensified neuronal firing, would induce a specific pattern of physiological alterations in cultured rat neocortex cells. Overall mean spontaneous discharge rates were little affected by 1 microM PTX but firing occurred mainly as repetitive high-frequency bursts of action potentials. This "phasic" pattern contrasted with the irregular, quasi-random, firing usually seen in control units. Neurons tested in normal growth medium after prolonged exposure to 1 microM PTX showed weaker interspike interval dependencies (Markov value) than in controls, along with reduced regularity in the occurrence of bursts. Since all physiological changes were opposite in direction to those reported earlier after chronic suppression of bioelectric activity, the results support the hypothesis that endogenous synaptic and/or action potentials are important for the maturation of neocortical networks. Since experimental alterations were found only in spike-train parameters which reflect ontogenetic changes in untreated control cultures, GABAergic inhibition (by preventing neuronal discharges from becoming too intense) presumably serves to constrain the rate of development within optimal limits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0361-9230(91)90018-fDOI Listing

Publication Analysis

Top Keywords

cultured rat
8
microm ptx
8
action potentials
8
abnormalities spontaneous
4
firing
4
spontaneous firing
4
firing patterns
4
patterns cultured
4
rat neocortical
4
neocortical neurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!