A novel coronary artery bypass graft design of sequential anastomoses.

Ann Biomed Eng

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: October 2010

In this paper, the hemodynamics in a three-dimensional out-of-plane sequential bypass graft model is first investigated. Based on the advantageous flow characteristics observed within the side-to-side (STS) anastomosis in the sequential bypass graft simulation, a new CABG coupled-sequential anastomosis configuration is designed, entailing coupled STS and end-to-side (ETS) anastomotic components. In this new CABG design, the flow fields and distributions of various wall shear stress parameters within the STS and ETS anastomotic regions are studied, and compared to those of the conventional distal anastomosis, by means of computational fluid dynamics simulation of pulsatile Newtonian blood flow. Simulation results demonstrate that the new sequential anastomoses model provides: (i) a more uniform and smooth flow at the ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses; and (iii) improved distribution of hemodynamic parameters at the coronary artery bed and in the heel region of the ETS anastomosis, with more moderate shear stress indices. These advantages of the new design over the conventional ETS anastomosis are influenced by the occlusion ratio of the native coronary artery, and are most prominent when the proximal segment of the coronary artery is fully occluded. By varying the design parameters of the anastomotic angle and distance between the two anastomoses, the superior coupled STS-ETS anastomoses design is found to have the anastomotic angle of 30° and 30 mm distance between the two (STS and ETS) components.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-010-0068-5DOI Listing

Publication Analysis

Top Keywords

coronary artery
24
ets anastomosis
16
bypass graft
12
sequential anastomoses
8
sequential bypass
8
ets anastomotic
8
shear stress
8
sts ets
8
blood flow
8
artery bed
8

Similar Publications

Analysis of the hemodynamic impact of coronary plaque morphology in mild coronary artery stenosis.

Comput Methods Programs Biomed

January 2025

Department of Mechanics & Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park / Yibin Istitute of Industrial Technology, Yibin 644000, China. Electronic address:

Objectives: As is well known, plaque morphology plays an important role in the hemodynamics of stenotic coronary arteries, thus their clinic outcomes. However, so far, there has been no research on how the cross-sectional shape of a stenotic lumen affects its hemodynamics. Therefore, this study aims to explore the impact of plaque cross-sectional shape on coronary hemodynamics under mild or moderate stenosis conditions (diameter stenosis degree ≤50 %).

View Article and Find Full Text PDF

Purpose: To report a successful case of vision restoration and macular reperfusion following branch retinal artery occlusion (BRAO) using pars plana vitrectomy with undermining the artery off the retinal bed.

Methods: This case report involves a 75-year-old patient who was diagnosed immediately with BRAO following cardiac catheterization procedure. An embolus at the superior retinal artery bifurcation was noted.

View Article and Find Full Text PDF

Atrial cardiomyopathy (AC) has been defined by the European Heart Rhythm Association as "Any complex of structural, architectural, contractile, or electrophysiologic changes in the atria with the potential to produce clinically relevant manifestations".1 The left atrium (LA) plays a key role in maintaining normal cardiac function; in fact atrial dysfunction has emerged as an essential determinant of outcomes in different clinical scenarios, such as valvular diseases, heart failure (HF), coronary artery disease (CAD) and atrial fibrillation (AF). A comprehensive evaluation, both anatomical and functional, is routinely performed in cardiac imaging laboratories.

View Article and Find Full Text PDF

Aims: Coronary microvascular dysfunction (CMD) is a heterogeneous condition defined by reduced coronary flow reserve (CFR). The new index 'microvascular resistance reserve' (MRR) has been developed, but its role is unclear. We investigate the relationships between functional indices in ANOCA (angina and non-obstructive coronary arteries) patients and evaluate the hemodynamic features of different CMD subtypes.

View Article and Find Full Text PDF

Cardiac rehabilitation (CR) is a cornerstone of heart disease (HD) management, enhancing functional capacity and quality of life. Hybrid cardiac rehabilitation (hCR), combining supervised center-based sessions with synchronous, real-time telerehabilitation at home, offers an alternative to conventional CR to overcome logistical barriers such as facility limitations, distance, and pandemic-related disruptions. This randomized controlled trial evaluated the noninferiority of hCR compared to standard CR in improving functional capacity in patients with chronic heart disease, including those with stable coronary artery disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!