Zeolites are aluminosilicate materials that contain regular three-dimensional arrays of molecular-scale pores, and they can act as hosts for catalytically active metal clusters. The catalytic properties of such zeolites depend on the sizes and shapes of the clusters, and also on the location of the clusters within the pores. Transmission electron microscopy has been used to image single atoms and nanoclusters on surfaces, but the damage caused by the electron beam has made it difficult to image zeolites. Here, we show that aberration-corrected scanning transmission electron microscopy can be used to determine the locations of individual metal atoms and nanoclusters within the pores of a zeolite. We imaged the active sites of iridium catalysts anchored in dealuminated HY zeolite crystals, determined their locations and approximate distance from the crystal surface, and deduced a possible cluster formation mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2010.92 | DOI Listing |
Nat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, K. N. Toosi University of Technology, Tehran 19697, Iran.
One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055 China. Electronic address:
In the typical ionothermal synthesis of crystalline carbon nitride (CCN), alkali metal halides are usually used in large amounts. Here, we report a new method for synthesizing poly (heptazine imide) (PHI) using only a trace amount of NaF, which is 20 times less than the amount of NaCl typically required to achieve the PHI structure. Different from the prevailing view that salts function primarily as templates and chelating agents during polymerization, our research revealed the unique role that NaF plays in the polymerization of PHI.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!