AMPK has been termed the fuel sensor of mammalian cells because it directly responds to the depletion of the fuel molecule ATP. In previous work, we found that AMPK is strongly activated by tumor-like hypoxia and glucose deprivation, independently of the oxygen response system associated with HIF-1. We also observed high levels of AMPK activity in tumor cells in vivo, using different model tumors. These findings suggested the hypothesis that modulation of AMPK activity could have therapeutic value for the treatment of solid tumors. To investigate this hypothesis, we have been conducting a SAR study of potential small-molecule modulators of AMPK activity. Here we report that the chemotherapeutic drug SU11248 (sunitinib) is at least as potent an inhibitor of AMPK as compound C, which is a commonly used experimental direct inhibitor of the enzyme. We also provide a computational model of the binding pose of SU11248 to an AMPKα subunit, which suggests a structural basis for the affinity of the drug for the ATP site of the catalytic domain. The ability of SU11248 to inhibit AMPK has potential clinical significance--there may be populations of SU11248-treated patients in which AMPK activity is inhibited in normal as well as in tumor tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087946 | PMC |
http://dx.doi.org/10.4161/cbt.10.1.12162 | DOI Listing |
Biochem Pharmacol
January 2025
Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of General Practice, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, Anhui Province 241000, China.
Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11651, Cairo, Egypt.
The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!