Perturbations in nucleosome structure from heavy metal association.

Nucleic Acids Res

Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.

Published: October 2010

Heavy metals have the potential to engage in strong bonding interactions and can thus function in essential as well as toxic or therapeutic capacities. We conducted crystallographic analyses of heavy cation binding to the nucleosome core particle and found that Co(2+) and Ni(2+) preferentially associate with the DNA major groove, in a sequence- and conformation-dependent manner. Conversely, Rb(+) and Cs(+) are found to bind only opportunistically to minor groove elements of the DNA, in particular at narrow AT dinucleotide sites. Furthermore, relative to Mn(2+) the aggressive coordination of Co(2+) and Ni(2+) to guanine bases is observed to induce a shift in histone-DNA register around the nucleosome center by stabilizing DNA stretching over one region accompanied by expulsion of two bases at an opposing location. These 'softer' transition metals also associate with multiple histone protein sites, including inter-nucleosomal cross-linking, and display a proclivity for coordination to histidine. Sustained binding and the ability to induce structural perturbations at specific locations in the nucleosome may contribute to genetic and epigenetic mechanisms of carcinogenesis mediated by Co(2+) and Ni(2+).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952864PMC
http://dx.doi.org/10.1093/nar/gkq420DOI Listing

Publication Analysis

Top Keywords

co2+ ni2+
12
perturbations nucleosome
4
nucleosome structure
4
structure heavy
4
heavy metal
4
metal association
4
association heavy
4
heavy metals
4
metals potential
4
potential engage
4

Similar Publications

A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.

View Article and Find Full Text PDF

β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.

View Article and Find Full Text PDF

Herein, we have used a simple synthetic strategy to access a novel non-sulfur fluorescent molecular probe coumarin and 1,8-napthyridine conjugated probe DNCS. The developed probe has great selectivity and sensitivity for detecting Hg ions. Our photophysical properties evaluation for the synthesized probe with different metal ions (Ba, Al, Ca, Bi, Ce, Cd, Cu, Sr, Co, Fe, Cr, Fe, Mn, Hg, Zn, Pb, Ni, and Sn) unveiled the very selective and sensitive fluorescence sensing behavior with Hg ions in the energy window of near UV and visible light radiation in an organic aqueous solvent mixture (EtOH and water).

View Article and Find Full Text PDF

Enhanced removal of Ni and Co from wastewater using a novel 2-hydroxyphosphonoacetic acid modified Mg/Fe-LDH composite adsorbent.

Water Res

December 2024

Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China. Electronic address:

While technological advancements in treating electroplating wastewater continue, removing high concentrations of Ni and Co remains a challenge. Surface functionalization of clay has emerged as a pivotal approach for effectively removing heavy metals, rivaling intercalation modification in its effectiveness. This study investigated the adsorption performance and mechanisms of a phosphonate-modified layered double hydroxide material, employing batch experiments and simulation calculations to elucidate the impact of surface modification on adsorption behavior.

View Article and Find Full Text PDF

Magnetic field regulation is an effective strategy to improve the photocatalytic activity of magnetic semiconductor photocatalysts, but it is not suitable for widely used nonmagnetic photocatalytic semiconductors. Here, we report a Zeeman effect-driven spin-polarized band splitting phenomenon in diluted magnetic semiconductors that show efficient photocatalytic CO reduction under visible-light irradiation. A flexible Ni-doped BaTiO nanofiber film is used as the diluted magnetic semiconductor model to prove this concept.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!