Background: Animal and clinical studies with plant-produced single-chain variable fragment lymphoma vaccines have demonstrated specific immunogenicity and safety. However, the expression levels of such fragments were highly variable and required complex engineering of the linkers. Moreover, the downstream processing could not be built around standard methods like protein A affinity capture.
Design: We report a novel vaccine manufacturing process, magnifection, devoid of the above-mentioned shortcomings and allowing consistent and efficient expression in plants of whole immunoglobulins (Igs).
Results: Full idiotype (Id)-containing IgG molecules of 20 lymphoma patients and 2 mouse lymphoma models were expressed at levels between 0.5 and 4.8 g/kg of leaf biomass. Protein A affinity capture purification yielded antigens of pharmaceutical purity. Several patient Igs produced in plants showed specific cross-reactivity with sera derived from the same patients immunized with hybridoma-produced Id vaccine. Mice vaccinated with plant- or hybridoma-produced Igs showed comparable protection levels in tumor challenge studies.
Conclusions: This manufacturing process is reliable and robust, the manufacturing time from biopsy to vaccine is <12 weeks and the expression and purification of antigens require only 2 weeks. The process is also broadly applicable for manufacturing monoclonal antibodies in plants, providing 50- to 1000-fold higher yields than alternative plant expression methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annonc/mdq256 | DOI Listing |
Front Plant Sci
January 2025
College of Agronomy, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.
View Article and Find Full Text PDFFront Chem
January 2025
Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections represent critical global health challenges due to the high morbidity and mortality associated with co-infections. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS), infects 4,000 people daily, potentially leading to 1.2 million new cases by 2025, while HCV chronically affects 58 million people, causing cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFFront Chem
January 2025
NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
Background: Monkeypox (Mpox) is a re-emerging zoonotic disease with limited therapeutic options, necessitating the exploration of novel antiviral agents. (turmeric) is a widely used medicinal plant known for its antioxidant and anti-inflammatory properties, primarily attributed to its bioactive curcuminoids.
Aim: This study aimed to evaluate the therapeutic potential of aqueous extract (CAE) against monkeypox through phytochemical characterization, biological assays, and computational analyses.
J Diabetes Res
January 2025
Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
Mushrooms and fenugreek are widely used to reduce hyperglycemia, and fenugreek is also used as a culinary ingredient to enhance flavor and aroma. This study is aimed at investigating the underlying mechanisms of the hypoglycemic effects of mushrooms and fenugreek in a Type 2 diabetic rat model. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) functions to reduce hyperglycemia through insulin-independent pathways and protects beta-cells.
View Article and Find Full Text PDFBiol Methods Protoc
December 2024
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.
Peroxidase DNAzymes are single-stranded, stable G-quadruplexes structures that exhibit catalytic activity with cofactor hemin. This class of DNAzymes offers several advantages over traditional protein and RNA catalysts, including thermal stability, resistance to hydrolysis, and easy of synthesis in the laboratory. However, their use in medicine, biology, and chemistry is limited due to their low catalytic rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!