Extracellular matrix (ECM) plays an important role in the regulation of hematopoiesis. The ECM obtained from murine long-term bone marrow cultures (LTBMCs) induces hematopoietic foci formation within 3 months after implantation under the murine renal capsule. The foci consist of approximately 3 x 10(6) hematopoietic cells and function for at least 11 months. The induced stroma contains transplantable precursors capable of transferring a hematopoietic microenvironment to secondary recipients, and is insensitive to the stroma-stimulating factor produced in recipient mice after irradiation. The ECM induces hematopoietic foci formation in chimeras irradiated by a dose which is lethal for most of the stromal precursors. These facts point to the differences observed between bone marrow stromal precursors and mesenchymal cells induced under the renal capsule. The foci contain bone, but its appearance is limited to early stages of foci growth, and depends on the dose of implanted ECM. Bone is not formed when the xenogeneic ECM from nonhematopoietic tissue is used as an inducer. In this case, the foci develop slowly and are observed only to the tenth month after implantation. The data obtained demonstrate a novel function of the ECM in the induction of a hematopoietic microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01703141DOI Listing

Publication Analysis

Top Keywords

hematopoietic microenvironment
12
bone marrow
12
induction hematopoietic
8
extracellular matrix
8
long-term bone
8
marrow cultures
8
induces hematopoietic
8
hematopoietic foci
8
foci formation
8
renal capsule
8

Similar Publications

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

HemaScope: A Tool for Analyzing Single-cell and Spatial Transcriptomics Data of Hematopoietic Cells.

Genomics Proteomics Bioinformatics

January 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!