The main objectives of this study were to assess the relationship between ammonia emissions from dairy cattle manure and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) concentration. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123+/-26 d in milk (DIM)], mid (175+/-3 DIM), and late (221+/-12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square design balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of feces and urine as well as milk sample collection. The feces and urine from each cow were mixed in the proportions in which they were excreted to make slurry that was used to measure ammonia emissions at 22.5 degrees C over 24 h using flux chambers. Samples of manure slurry were taken before and after ammonia emission measurements. The amount of slurry increased by 22% as dietary CP concentration increased from 15 to 21%, largely because of a greater urine volume (25.3 to 37.1 kg/d). Initial urea N concentration increased linearly with dietary CP from 153.5 to 465.2 mg/dL in manure slurries from cows fed 15 to 21% CP diets. Despite the large initial differences, the final concentration of urea N in manure slurries was less than 10.86 mg/dL for all dietary treatments. The final total ammoniacal N concentration in manure slurries increased linearly from 228.2 to 508.7 mg/dL as dietary CP content increased from 15 to 21%. Ammonia emissions from manure slurries ranged between 57 and 149 g of N/d per cow and increased linearly with dietary CP content, but were unaffected by stage of lactation. Ammonia emission expressed as a proportion of N intake increased with percentage CP in the diet from about 12 to 20%, whereas ammonia emission as a proportion of urinary urea N excretion decreased from 67 to 47%. There was a strong relationship between ammonia emission and MUN [ammonia emission (g/d per cow)=25.0 (+/-6.72)+5.03 (+/-0.373) x MUN (mg/dL); R(2)=0.85], which was not different among lactation stages. Milk urea N concentration is one of several factors that allows prediction of ammonia emissions from dairy cattle manure.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2009-2415DOI Listing

Publication Analysis

Top Keywords

ammonia emission
20
ammonia emissions
20
milk urea
16
stage lactation
16
manure slurries
16
dairy cattle
12
cattle manure
12
increased linearly
12
ammonia
9
prediction ammonia
8

Similar Publications

Biofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered and generates less ethanol than fermentation of hydrolyzed switchgrass from an average rainfall year.

View Article and Find Full Text PDF

Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).

View Article and Find Full Text PDF

Influence of forage-to-concentrate ratio on the effects of a radiata pine bark extract on methane production and fermentation using the rumen simulation technique.

Animal

December 2024

Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:

Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.

View Article and Find Full Text PDF

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!