Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region -514 to -475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE). In this study, we show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and Ifi204 bind these regulatory elements of the apoD promoter. Specific binding of HnRNP-U and Parp-1 was confirmed by Electrophoretic Mobility Shift Assay (EMSA). In a biotin pull-down assay, Kif4 and BUB-3 bind preferentially the SRE1 and the EBS-GRE sites, respectively, while APEX-1 seems recruited indirectly to these elements. We found that the mRNA expression of some of these binding factors is upregulated in growth-arrested cells and that these proteins also transactivate the apoD promoter. In agreement with these results, mutants of APEX-1 and of Parp-1 defective for their DNA-binding and catalytic activities could not transactivate the promoter. The knockdown of Parp-1 and HnRNP-U and the use of specific inhibitors of MEK1/2 and of Parp-1 also inhibited the induction of apoD gene expression. Moreover, ERK1/2 was found activated in a biphasic manner post serum-starvation and the inhibition of Parp-1 causes a sustained activation of ERK2 but not ERK1 for up to 2h. Altogether, these findings demonstrate the importance of Parp-1, APEX-1 and ERK1/2 catalytic activities in the growth arrest-induced apoD gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114184PMC
http://dx.doi.org/10.1016/j.bbamcr.2010.04.011DOI Listing

Publication Analysis

Top Keywords

catalytic activities
12
parp-1
8
parp-1 apex-1
8
apex-1 erk1/2
8
erk1/2 catalytic
8
mrna expression
8
growth-arrested cells
8
specific binding
8
parp-1 hnrnp-u
8
apod promoter
8

Similar Publications

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial secondary messenger with diverse functions. A previous Escherichia coli proteome microarray identified that c-di-GMP binds to the 23S rRNA methyltransferases RlmI and RlmE. Here we show that c-di-GMP inhibits RlmI activity in rRNA methylation assays, and that it modulates ribosome assembly in the presence of kanamycin.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

Piezoelectric catalysis possesses the potential to convert ocean wave energy into and holds broad prospects for extracting uranium from seawater. Herein, the Z-type ZnO@COF heterostructure composite with excellent piezoelectric properties was synthesized through in situ growth of covalent organic frameworks (COFs) on the surface of ZnO and used for efficient uranium extraction. The designed COFs shell enables ZnO with stability, abundant active sites and high-speed electron transport channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!