During apoptosis, mitochondrial outer membrane permeabilization (MOMP) is often a point-of-no-return; death can proceed even if caspase activation is disrupted. However, under certain conditions, resistance to MOMP-dependent, caspase-independent cell death is observed. Mitochondrial recovery represents a key process in this survival. Live cell imaging revealed that during apoptosis not all mitochondria in a cell necessarily undergo MOMP. This incomplete MOMP (iMOMP) was observed in response to various stimuli and in different cell types regardless of caspase activity. Importantly, the presence of intact mitochondria correlated with cellular recovery following MOMP, provided that caspase activity was blocked. Such intact mitochondria underwent MOMP in response to treatment of cells with the Bcl-2 antagonist ABT-737, suggesting that the resistance of these mitochondria to MOMP lies at the point of Bax or Bak activation. Thus, iMOMP provides a critical source of intact mitochondria that permits cellular survival following MOMP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004027PMC
http://dx.doi.org/10.1016/j.devcel.2010.03.014DOI Listing

Publication Analysis

Top Keywords

intact mitochondria
16
caspase-independent cell
8
cell death
8
caspase activity
8
momp
7
mitochondria
6
cell
5
resistance caspase-independent
4
death requires
4
requires persistence
4

Similar Publications

Leucinostatins target Plasmodium mitochondria to block malaria transmission.

Parasit Vectors

December 2024

Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.

Background: Malaria remains a critical disease. Leucinostatins from the fungus Purpureocillium lilacinum inhibited the transmission of Plasmodium falciparum to mosquitoes via contact.

Methods: Here, we modified the leucinostatin B (LB) C-terminus to make derivatives and examined their inhibition against malaria transmission to mosquitoes.

View Article and Find Full Text PDF

In response to external stress, mitochondrial dynamics is often disrupted, but the associated physiologic changes are often uncharacterized. In many cancers, including glioblastoma (GBM), mitochondrial dysfunction has been observed. Understanding how mitochondrial dynamics and physiology contribute to treatment resistance will lead to more targeted and effective therapeutics.

View Article and Find Full Text PDF

Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae.

View Article and Find Full Text PDF

Intercellular mitochondrial transfer (IMT) is an intriguing biological phenomenon where mitochondria are transferred between different cells and notably, cell types. IMT is physiological, occurring in normal conditions, but also is utilized to deliver healthy mitochondria to cells in distress. Transferred mitochondria can be integrated to improve cellular metabolism, and mitochondrial function.

View Article and Find Full Text PDF

Remote ischemic preconditioning (RIPC) represents a clinically feasible method for safeguarding vital organs against ischemic injury. However, its specific role in cerebral ischemia-reperfusion (I/R) injury remains to be definitively elucidated. In this study, we investigated the neuroprotective effects of RIPC on mice at 7 days post-cerebral I/R and its involvement in mitophagy and mitochondrial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!