Synaptosomes were isolated from rat cerebra, and incubated in the presence of labelled phosphate and inositol. When the potassium concentration of the medium was increased by replacing NaCl with KCl, there was a marked increase in phosphate labeling of phosphatidic acid (PA) and phosphatidylinositol (PI). This was evident with [K(+)] above 12 mM and peaked at about 40 mM KCl. In normal calcium buffers, phosphate labeling of PI but not PA declined sharply with [KCl] above 40 mM. In low calcium buffers, the phosphate labeling response was greatly attenuated for both lipids, but PI labeling did not decline at higher [K(+)]. The phosphate labeling response was confined to PA and PI, and was specific for the increase in [K(+)](0). The same response was seen in constant (105 mM) sodium buffers, and atropine had no effect. The specific radioactivity of ATP was increased by elevated potassium, but not enough to account for the increased labeling of PA. Further, this appeared to be a result of the loss of stored ATP rather than an increase in turnover. Increasing [K(+)](0) produced a decline in [(3)H]inositol incorporation into PI in parallel with the increase in its labeling by (33)PO(4). This was the same in constant sodium and in low calcium buffers. It could be attributed to an inhibition of synaptosomal uptake of labelled inositol from the medium. Synaptosomal inositol content was unaffected. Elevated potassium had a greater effect on PA labeling than on PI, and it was more effective in increasing phosphate labeling of PA than was acetylcholine (ACh). When ACh and elevated potassium were combined at their maximally effective concentration, they acted synergistically to stimulate phosphate incorporation into PA but elevated potassium blocked the increase in [(3)H]inositol incorporation into PI normally produced by ACh. These results indicate that elevated potassium and ACh act upon the same population of synaptosomes, but affect different biochemical steps. Elevated potassium probably effects phospholipid labeling by a calcium dependent increase in diglyceride production from lipids other than PA or PI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0197-0186(86)90066-5DOI Listing

Publication Analysis

Top Keywords

elevated potassium
28
phosphate labeling
20
calcium buffers
12
labeling
10
buffers phosphate
8
low calcium
8
labeling response
8
[3h]inositol incorporation
8
elevated
7
phosphate
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!