Sugarcane plants were developed that produce the sucrose isomers trehalulose and isomaltulose through expression of a vacuole-targeted trehalulose synthase modified from the gene in 'Pseudomonas mesoacidophila MX-45' and controlled by the maize ubiquitin (Ubi-1) promoter. Trehalulose concentration in juice increased with internode maturity, reaching about 600 mM, with near-complete conversion of sucrose in the most mature internodes. Plants remained vigorous, and trehalulose production in selected lines was retained over multiple vegetative generations under glasshouse and field conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2010.00528.x | DOI Listing |
PLoS One
November 2024
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
Sugarcane has been grown all around the world to meet sugar demands for industrial sector. The current sugar recovery percentage in sugarcane cultivars is dismally low which demands scientific efforts for improvements. Multiple approaches were adopted to enhance sugar contents in commercial sugarcane plants in contrast to conventional plant breeding methods.
View Article and Find Full Text PDFSci Rep
November 2022
Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
Enhancement of sugar contents and yielding healthful sugar products from sugarcane demand high profile scientific strategies. Previous efforts to foster manipulation in metabolic pathways or triggering sugar production through combating abiotic stresses fail to yield high sugar recovery in Saccharum officinarum L. Novel sucrose isomers trehalulose (TH) and isomaltulose (IM) are naturally manufactured in microbial sources.
View Article and Find Full Text PDFThe food enzyme isomaltulose synthase (sucrose glucosylmutase; EC 5.4.99.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2016
Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
Trehalose-6-phosphate hydrolase (TreA) belongs to glycoside hydrolase family 13 (GH13) and catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to yield glucose and glucose 6-phosphate. The products of this reaction can be further metabolized by the energy-generating glycolytic pathway. Here, crystal structures of Bacillus licheniformis TreA (BlTreA) and its R201Q mutant complexed with p-nitrophenyl-α-D-glucopyranoside (R201Q-pPNG) are presented at 2.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
April 2014
Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.
The α-glucosidase HaG from the halophilic bacterium Halomonas sp. strain H11 catalyzes the hydrolysis of the glucosidic linkage at the nonreducing end of α-glucosides, such as maltose and sucrose, to release α-glucose. Based on its amino-acid sequence, this enzyme is classified as a member of glycoside hydrolase family 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!