Mathematical models, combined with experimental evaluation, provide an approach to understand, design, and optimize food process operations. Magnetic resonance imaging (MRI), as an experimental technique, is used extensively in both medical and engineering applications to measure and quantify transport processes. Magnetic resonance (MR) was used in this study to assess a mathematical model based on Fourier's second law. The objective was to compare analytical solutions for the prediction of internal temperature distributions in foods during oven-based convective heating to experimental temperature measurements and determine at what point during the heating process a coupled heat and mass transport process should be considered. Cylindrical samples of a model food gel, Russet potato and rehydrated mashed potato were heated in a convection oven for specified times. Experimentally measured internal temperatures were compared to the internal temperatures predicted by the analytical model. Temperatures distributions in the axial direction compared favorably for the gel and acceptably for the Russet and mashed potato samples. The MR-acquired temperatures in the radial direction for the gel resulted in a shallower gradient than predicted but followed the expected trend. For the potato samples, the MR-acquired temperatures in the radial direction were not qualitatively similar to the analytical predictions due to moisture loss during heating. If temperature resolution is required in the radial direction, moisture losses merit the use of transport models that couple heat and mass transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2009.01442.x | DOI Listing |
Micromachines (Basel)
January 2025
College of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China.
The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube electrode sidewall remains a significant challenge, limiting the broader application of this technology. To enhance the efficiency and quality of machining these jet micro-holes on the tube sidewall, a helical electrode electrochemical drilling method assisted by anode vibration has been proposed.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFAdv Mater
January 2025
Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
Antimicrobial resistance and impaired bone regeneration are the great challenges in treating infected bone defects. Its recurrent and resistant nature, high incidence rate, long-term hospitalization, and high medical costs have driven the efforts of the scientific community to develop new therapies to improve the situation. Considering the complex microenvironment and persistent mechanisms mediated by resistant bacteria, it is crucial to develop an implant with enhanced osseointegration and sustained and effective infection clearance effects.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
January 2025
Department of Neurosurgery, Kanto Rosai Hospital, Kanagawa, Japan.
Background: The presence of significant tortuosity in access routes to aneurysms can interfere with catheter guidance and manipulation and significantly impact treatment strategies.
Observations: In this report, the authors combined intentional staged aneurysm embolization with the construction of a new direct access route, which they call a "highway bypass," for a symptomatic posterior circulation cerebral aneurysm that was difficult to access with a catheter. Notably, the highway bypass is used for catheter passage, and technical tips should be considered.
Cardiovasc Diabetol
January 2025
Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
Background: Ischemia with nonobstructive coronary arteries (INOCA) has high morbidity, mortality, and poor quality of life. Metabolic syndrome (MetS) is a complex of multiple cardiac metabolic risk factors, significantly increasing the risk of major adverse cardiovascular events in INOCA patients. The study aimed to investigate the aggravating effect of MetS on left ventricular (LV) deformation and function impairment in INOCA patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!