The genomes of Bacillus cereus and its closest relative Bacillus anthracis each contain two LmbE protein family homologs: BC1534 (BA1557) and BC3461 (BA3524). Only a few members of this family have been biochemically characterized including N-acetylglucosaminylphosphatidyl inositol (GlcNAc-PI), 1-D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins), N,N'-diacetylchitobiose (GlcNAc(2)) and lipoglycopeptide antibiotic de-N-acetylases. All these enzymes share a common feature in that they de-N-acetylate the N-acetyl-D-glucosamine (GlcNAc) moiety of their substrates. The bc1534 gene has previously been cloned and expressed in Escherichia coli. The recombinant enzyme was purified and its 3D structure determined. In this study, the bc3461 gene from B. cereus ATCC14579 was cloned and expressed in E. coli. The recombinant enzymes BC1534 (EC 3.5.1.-) and BC3461 were biochemically characterized. The enzymes have different molecular masses, pH and temperature optima and broad substrate specificity, de-N-acetylating GlcNAc and N-acetylchito-oligomers (GlcNAc(2), GlcNAc(3) and GlcNAc(4)), as well as GlcNAc-1P, N-acetyl-D-glucosamine-1 phosphate; GlcNAc-6P, N-acetyl-D-glucosamine-6 phosphate; GalNAc, N-acetyl-D-galactosamine; ManNAc, N-acetyl-D-mannosamine; UDP-GlcNAc, uridine 5'-diphosphate N-acetyl-D-glucosamine. However, the enzymes were not active on radiolabeled glycol chitin, peptidoglycan from B. cereus, N-acetyl-D-glucosaminyl-(beta-1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) or N-acetyl-D-GlcN-Nalpha1-6-D-myo-inositol-1-HPO(4)-octadecyl (GlcNAc-I-P-C(18)). Kinetic analysis of the activity of BC1534 and BC3461 on GlcNAc and GlcNAc(2) revealed that GlcNAc(2) is the favored substrate for both native enzymes. Based on the recently determined crystal structure of BC1534, a mutational analysis identified functional key residues, highlighting their importance for the catalytic mechanism and the substrate specificity of the enzyme. The catalytic efficiencies of BC1534 variants were significantly decreased compared to the native enzyme. An alignment-based tree places both de-N-acetylases in functional categories that are different from those of other LmbE proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2010.07691.xDOI Listing

Publication Analysis

Top Keywords

substrate specificity
12
lmbe proteins
8
proteins bacillus
8
bacillus cereus
8
broad substrate
8
bacillus anthracis
8
biochemically characterized
8
cloned expressed
8
coli recombinant
8
bc1534
6

Similar Publications

Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells.

Chem Sci

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.

View Article and Find Full Text PDF

N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities.

View Article and Find Full Text PDF

Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.

View Article and Find Full Text PDF

NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.

View Article and Find Full Text PDF

Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase (74 characters including spaces).

J Biol Chem

January 2025

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. Electronic address:

Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices utilize FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!