Human dental follicle cells (DFCs) are progenitor cells. Recent studies supposed that osteogenic differentiation of DFCs is controlled by growth factors such as BMP2 and IGF2, but their influence on the differentiation of DFCs has not been investigated in detail. We examined DFCs after the induction of osteogenic differentiation with BMP2, IGF2 and a standard osteogenic differentiation medium (ODM) with dexamethasone. The alkaline phosphatase (ALP) activity and the calcium accumulation demonstrated osteogenic differentiation after all treatments, but with the most effective differentiation by ODM. Interestingly, markers of the process of osteoblast differentiation were much higher up-regulated in BMP2- or IGF2-treated cells than in ODM-treated cells. To evaluate the reason of these differences, we compared genome-wide expression profiles at an early stage of differentiation. Chondroblast markers in BMP2-differentiated cells and general markers for cell differentiation/proliferation in IGF2-treated cells were significantly regulated. However, ODM-treated DFCs expressed late markers of osteogenic-differentiated DFCs such as the transcription factor ZBTB16 that is not expressed in BMP2- or IGF2-differentiated cells. Importantly, although the BMP-antagonist noggin (NOG) diminishes the phosphorylation of SMAD1 in DFCs, it did not inhibit osteogenic differentiation by ODM and the expression of ZBTB16. In conclusion, this study demonstrates that osteogenic differentiation of DFCs can be stimulated with all tested inducers but also independently of BMP signaling. To evaluate this mechanism, the transcription factor ZBTB16 is a target for further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2010.0027DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
24
differentiation dfcs
12
differentiation
11
human dental
8
dental follicle
8
cells
8
follicle cells
8
dfcs
8
bmp2 igf2
8
differentiation odm
8

Similar Publications

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

Cellulose-mediated mechanical property tuning in small intestinal submucosal matrix to enhance stem cell osteogenic differentiation.

Int J Biol Macromol

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China. Electronic address:

Natural extracellular matrices (ECM) provide a more accurate simulation of the cellular growth environment, making them excellent substrate materials for in vitro cell culture. The porcine small intestinal submucosa (SIS) is one of the most widely used natural ECM that display superior bioactivity. However, decellularization operations often result in fiber breakage and failure to recover mechanical strength in the SIS.

View Article and Find Full Text PDF

Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.

View Article and Find Full Text PDF

Antibacterial and osteogenic gain strategy on titanium surfaces for preventing implant-related infections.

Colloids Surf B Biointerfaces

December 2024

College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:

Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.

View Article and Find Full Text PDF

Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured in vitro on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!