Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interaction of the wild type (wt) heat shock protein Hsp27 and its three-dimensional (3D) mutant (mimicking phosphorylation at Ser15, 78, and 82) with rabbit skeletal muscle phosphorylase kinase (PhK) has been studied under crowding conditions modeled by addition of 1 M trimethylamine N-oxide (TMAO). According to the data of sedimentation velocity and dynamic light scattering, crowding provokes the formation of large-sized associates of both PhK and Hsp27. Under crowding conditions, small associates of PhK and Hsp27 interact with each other thus leading to dissociation of large homooligomers of each protein. Taking into account high concentrations of PhK in the cell, we speculate that native PhK might modulate the oligomeric state and chaperone-like activity of Hsp27.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.200900397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!