Post-stroke inflammation may induce upregulation of the kynurenine (KYN) pathway for tryptophan (TRP) oxidation, resulting in neuroprotective (kynurenic acid, KA) and neurotoxic metabolites (3-hydroxyanthranillic acid, 3-HAA). We investigated whether activity of the kynurenine pathway in acute ischemic stroke is related to initial stroke severity, long-term stroke outcome and the ischemia-induced inflammatory response. Plasma concentrations of TRP and its metabolites were measured in 149 stroke patients at admission, at 24 h, at 72 h and at day 7 after stroke onset. We evaluated the relation between the KYN/TRP ratio, the KA/3-HAA ratio and stroke severity, outcome and inflammatory parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and neutrophil/lymphocyte ratio (NLR)). KYN/TRP but not KA/3-HAA correlated with the NIHSS score and with the infarct volume. Patients with poor outcome had higher mean KYN/TRP ratios than patients with more favourable outcome. The KYN/TRP ratio at admission correlated with CRP levels, ESR and NLR. The activity of the kynurenine pathway for tryptophan degradation in acute ischemic stroke correlates with stroke severity and long-term stroke outcome. Tryptophan oxidation is related to the stroke-induced inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-010-0187-2DOI Listing

Publication Analysis

Top Keywords

kynurenine pathway
12
acute ischemic
12
ischemic stroke
12
stroke severity
12
stroke
10
pathway acute
8
pathway tryptophan
8
activity kynurenine
8
severity long-term
8
long-term stroke
8

Similar Publications

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Activation of the kynurenine pathway identified in individuals with covert hepatic encephalopathy.

Hepatol Commun

December 2024

Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.

Background: HE is a neuropsychiatric complication of liver disease characterized by systemic elevation in ammonia and proinflammatory cytokines. These neurotoxins cross the blood-brain barrier and cause neuroinflammation, which can activate the kynurenine pathway (KP). This results in dysregulated production of neuroactive KP metabolites, such as quinolinic acid, which is known to cause astrocyte and neuronal death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!