Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state ((4) I (13/2)) to the ground state ((4) I (15/2)) of Er(3+) at 1.53 µm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er(3+) ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er(3+) emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er(3+) ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-010-0708-6 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.
View Article and Find Full Text PDFChemistry
December 2024
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, CHINA.
Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.
View Article and Find Full Text PDFWe report Er emission in YAlO host, sensitized by Cr. The excitation bands of Cr at 416 and 555 nm are broad and effectively cover the region 400-600 nm. The phosphor can be useful for converting 400-600 nm radiations to infrared (IR) light around 1521 nm.
View Article and Find Full Text PDFBackground: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.
Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.
ACS Nano
December 2024
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Optical imaging in the 1500-1700 nm region, known as near-infrared IIb (NIR-IIb), shows potential for noninvasive in vivo detection owing to its ultrahigh tissue penetration depth and spatiotemporal resolution. Rare earth-doped nanoparticles have emerged as widely used NIR-IIb probes because of their excellent optical properties. However, their downshifting emissions rarely exhibit sufficient brightness beyond 1600 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!