When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-010-0070-y | DOI Listing |
J Vasc Access
January 2025
Clínica de Dialise Splendore, Sao Paulo, Brazil.
Introduction: Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis. Whether acute arm movement impacts arteriovenous fistula (AVF) blood flow is unknown.
Methods: In this cross-sectional analysis, we evaluated AVF blood flow using an ultrasound device at resting and after three muscle movements for proximal (elbow flexion, shoulder adduction and abduction) or distal AVF (fist extension and flexion, fingers squeeze), without and with a 2 kg load.
Foods
December 2024
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.
View Article and Find Full Text PDFSci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China.
PLoS One
December 2024
School of Modern Information Industry, Guangzhou College of Commerce, Guangzhou, China.
Traffic flow prediction is an important part of transportation management and planning. For example, accurate demand prediction of taxis and online car-hailing can reduce the waste of resources caused by empty cars. The prediction of public bicycle flow can be more reasonable to plan the release and deployment of public bicycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!