Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species' lens into a cortex and nuclear region. In addition to crystallin distribution, we also assayed fatty acid (FA) composition by negative ion electrospray ionization mass spectrometry (ESI-MS). The majority of toothfish lens crystallins from cortex (90.4%) were soluble, whereas only a third (31.8%) from the nucleus was soluble. Crystallin solubility analysis by SDS-PAGE and immunoblots revealed that relative proportions of crystallins in both soluble and urea-soluble fractions were similar within each species examined and in agreement with previous reports for bovine lens. From our data, we found that both toothfish and cow crystallins follow patterns of insolubility that mirror each animals lens composition with more γ crystallin aggregation seen in the toothfish lens nucleus than in cow. Toothfish lens lipids had a large amount of polyunsaturated fatty acids that were absent in cow resulting in an unsaturation index (I(U)) four-fold higher than that of cow. We identified a novel FA with a molecular mass of 267 mass units in the lens epithelial layer of the toothfish that accounted for well over 50% of the FA abundance. The unidentified lipid in the toothfish lens epithelia corresponds to either an odd-chain (17 carbons) FA or a furanoid. We conclude that long-lived fishes are likely good animal models of lens crystallin solubility and may model post-translational modifications and solubility changes better than short-lived animal models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-010-0475-9DOI Listing

Publication Analysis

Top Keywords

toothfish lens
16
lens
14
toothfish
9
antarctic toothfish
8
toothfish cow
8
lens crystallin
8
solubility changes
8
crystallin solubility
8
animal models
8
cow
6

Similar Publications

Controlling Liquid-Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish.

J Mol Biol

December 2018

Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA. Electronic address:

Liquid-liquid phase separation (LLPS) of proteins is important to a variety of biological processes both functional and deleterious, including the formation of membraneless organelles, molecular condensations that sequester or release molecules in response to stimuli, and the early stages of disease-related protein aggregation. In the protein-rich, crowded environment of the eye lens, LLPS manifests as cold cataract. We characterize the LLPS behavior of six structural γ-crystallins from the eye lens of the Antarctic toothfish Dissostichus mawsoni, whose intact lenses resist cold cataract in subzero waters.

View Article and Find Full Text PDF

The γS1- and γS2-crystallins, structural eye lens proteins from the Antarctic toothfish (Dissostichus mawsoni), are homologues of the human lens protein γS-crystallin. Although γS1 has the higher thermal stability of the two, it is more susceptible to chemical denaturation by urea. The lower thermodynamic stability of both toothfish crystallins relative to human γS-crystallin is consistent with the current picture of how proteins from organisms endemic to perennially cold environments have achieved low-temperature functionality via greater structural flexibility.

View Article and Find Full Text PDF

Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species' lens into a cortex and nuclear region.

View Article and Find Full Text PDF

The eye lens of the Antarctic toothfish living in the -2 degrees C Southern Ocean is cold-stable. To investigate the molecular basis of this cold stability, we isolated, cloned and sequenced 22 full length crystallin cDNAs. We found two alpha crystallins (alphaA, alphaB), six beta crystallins (betaA1, betaA2, betaA4, betaB1, betaB2, betaB3) and 14 gamma crystallins (gammaN, gammaS1, gammaS2, gammaM1, gammaM3, gammaM4, gammaM5, gammaM7, gammaM8a, gammaM8b, gammaM8c, gammaM8d, gammaM8e, and gammaM9).

View Article and Find Full Text PDF

The eye lenses of the Antarctic nototheniid fishes that inhabit the perennially freezing Antarctic seawater are transparent at -2 degrees C, whereas the cold-sensitive mammalian and tropical fish lenses display cold-induced cataract at 20 degrees C and 7 degrees C, respectively. No cold-cataract occurs in the giant Antarctic toothfish Dissostichus mawsoni lens when cooled to temperatures as low as -12 degrees C, indicating highly cold-stable lens proteins. To investigate this cold stability, we characterised the lens crystallin proteins of the Antarctic toothfish, in parallel with those of the sub-tropical bigeye tuna Thunnus obesus and the endothermic cow Bos taurus, representing three disparate thermal climes (-2 degrees C, 18 degrees C and 37 degrees C, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!