Epigenetic regulation of myofibroblast differentiation by DNA methylation.

Am J Pathol

Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.

Published: July 2010

DNA methylation, a key mechanism of repressing gene expression, is of particular relevance in controlling development and cell differentiation. We analyzed the extent and regulation of DNA methylation of the alpha-smooth muscle actin (alpha-SMA) gene to elucidate its potential role in myofibroblast differentiation. These experiments revealed the presence of three CpG islands that were methylated at different levels in fibroblasts, myofibroblasts, and alveolar epithelial type II cells. Coordinately, these cells expressed low, high, or no alpha-SMA, respectively. In addition, inhibition of DNA methyltransferase activity or knock down of DNA methyltransferase using specific small interfering RNA caused significant induction of alpha-SMA in fibroblasts. In contrast, induced overexpression of DNA methyltransferase suppressed alpha-SMA gene expression. Transforming growth factor beta induced myofibroblast differentiation was enhanced or suppressed by knockdown or overexpression of DNA methyltransferase, respectively. Finally, in vitro DNA methylation of the alpha-SMA promoter suppressed its activity. These findings suggest that DNA methylation mediated by DNA methyltransferase is an important mechanism regulating the alpha-SMA gene expression during myofibroblast differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893647PMC
http://dx.doi.org/10.2353/ajpath.2010.090999DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
dna methyltransferase
20
myofibroblast differentiation
16
gene expression
12
alpha-sma gene
12
dna
10
overexpression dna
8
alpha-sma
6
differentiation
5
methylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!