Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The field of high-content screening and analysis consists of a set of methodologies for automated discovery in cell biology and drug development using large amounts of image data. In most cases, imaging is carried out by automated microscopes, often assisted by automated liquid handling and cell culture. Image processing, computer vision, and machine learning are used to automatically process high-dimensional image data into meaningful cell biological results. The key is creating automated analysis pipelines typically consisting of 4 basic steps: (1) image processing (normalization, segmentation, tracing, tracking), (2) spatial transformation to bring images to a common reference frame (registration), (3) computation of image features, and (4) machine learning for modeling and interpretation of data. An overview of these image analysis tools is presented here, along with brief descriptions of a few applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057110370894 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!