ABSTRACT The association of osteoporosis with COPD is well established, but the relationship between systemic inflammatory mediators and bone metabolism has not been explored. Plasma samples from 40 COPD patients awaiting lung transplantation were analyzed for 27 inflammatory mediators using a multiplex protein array. C-telopeptide type I collagen (CTx), a marker of bone resorption, was measured with ELISA, and N-terminal procollagen propeptide (P1NP), a marker of bone formation, was ascertained with a radioimmunoassay. Associations between inflammatory mediators versus CTx and P1NP with adjustments for steroid and bisphosphonate use were determined. Mean age was 59 years (+/- 6) and FEV(1) was 23.5% (+/- 8.3%) predicted. Ninety-five percent of the subjects had low bone mineral density measured by dual x-ray absorptiometry (DXA). Tumor necrosis factor alpha and interleukin 4 were positively associated with CTx and P1NP. RANTES and eotaxin were inversely associated with CTx and P1NP. Interleukin 2 and interferon gamma were also directly associated with P1NP. Biologically plausible systemic mediators are associated with bone metabolism in patients with severe COPD, offering potential insight into risk factors and underlying mechanisms of bone disease. Furthermore, they may be useful in monitoring disease activity, and serve as targets for biological therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985167PMC
http://dx.doi.org/10.3109/15412555.2010.482114DOI Listing

Publication Analysis

Top Keywords

inflammatory mediators
16
bone metabolism
12
ctx p1np
12
mediators associated
8
associated bone
8
marker bone
8
associated ctx
8
bone
7
mediators
5
associated
5

Similar Publications

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer.

View Article and Find Full Text PDF

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!