Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201000174 | DOI Listing |
J Control Release
January 2025
National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:
Current pharmacotherapy for DED is limited by a vicious inflammatory cycle in which reactive oxygen species (ROS) play a critical role. Additionally, topical eye drop therapy for DED often suffers from poor ocular availability due to multiple ocular surface barriers. Considering the key role of the ROS-NLRP3-IL-1β signaling axis in DED, in this investigation, fluorinated multifunctional polymer vesicles were developed for enhanced ocular surface penetration and synergistic DED therapy by combining ROS scavenging and immunomodulation.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFThis paper explores optimization strategies for polymeric materials in organic solar cells (OSCs) with the focus on varying alkyl side chain, addition of fluorine atom, and thiophenated derivatives onto polymer. As such, it outlines the significance of renewable energy sources and the potential of photovoltaic technologies, particularly organic photovoltaics (OPVs). Objectives include factors affecting power conversion efficiency (PCE), open-circuit voltage (Voc), aggregation tendencies, and optoelectronic properties in OPVs.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.
The electrocatalytic synthesis of multicarbon compounds from CO is a promising method for storing renewable electricity and addressing global CO issues. Single-atom catalysts are promising candidates for CO reduction, but producing high-value multicarbon (C) products using a single-atom structure remains a significant challenge. In this study, a fluorine doping strategy is proposed to facilitate the reconstruction of isolated Cu atoms, promoting multicarbon generation.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402202, Taiwan.
Additives play a pivotal role in enhancing the efficiency of perovskite solar cells (PSCs), and carefully designed additives contribute to major breakthroughs in device performance. In this study, a series of novel A-π-A-type porphyrin derivatives-PPH-1, PPH-2, and PPF-1-are synthesized, each incorporating pyridyl groups, specifically engineered to function as passivation agents for PSCs. The electron-withdrawing properties of fluorine in PPF-1 increase the molecular polarity, thereby strengthening its interaction with the perovskite and enhancing the passivation efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!