A noncovalent macrocycle-within-noncovalent macrocycle assembly is formed from twelve molecules of (+/-)-1 and twelve molecules of MeOH in the solid state. The H-bonded (MeOH)(12) cyclododecamer assumes a crown-shaped geometry that has not previously been predicted theoretically or found experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc00677gDOI Listing

Publication Analysis

Top Keywords

non-covalent macrocycle
8
macrocycle assembly
8
twelve molecules
8
nanotubular non-covalent
4
macrocycle non-covalent
4
assembly meoh12
4
meoh12 encapsulated
4
encapsulated molecular
4
molecular clip
4
clip cyclododecamer
4

Similar Publications

Twisted Cucurbit[14]uril-Based Supramolecular Self-Assembly Induces Fluorescence Emission of Dye Molecules for Multi-Channel Cell Imaging.

Chemistry

December 2024

Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.

In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.

View Article and Find Full Text PDF

Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researchers have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

The advancement of synthetic host-guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the creation of intricately organized architectures. Within the realm of macrocycles, these cavitands stand out as privileged scaffolds owing to their synthetic adaptability, excellent topological structures, and unique recognition properties.

View Article and Find Full Text PDF

Supramolecular nanotherapeutics based on cucurbiturils.

J Nanobiotechnology

December 2024

Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.

Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!