Hydroxyapatite is the mineral component of human bones and teeth enamel and is used as synthetic biomaterial. It also grows outside bioglasses as a response of their incorporation in body fluids. The focus is then on understanding the microscopic steps occurring at its surfaces as this allows researchers to understand the key features of biomolecular adhesion. This perspective article deals with in silico simulations of these processes by quantum-mechanical methods based on density functional theory using the hybrid B3LYP functional and Gaussian basis functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c002146f | DOI Listing |
Bioresour Technol
January 2025
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed.
View Article and Find Full Text PDFOral Dis
January 2025
Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
Objective: To investigate the microarchitecture and crystalline composition of sialoliths and to explore their formation mechanisms.
Methods: Sixty-six sialolith samples (51 from the submandibular glands and 15 from the parotid glands) were retrospectively collected. Their diameter and quality were measured.
Nat Commun
January 2025
Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Chin.
Introduction: Different Guided Tissue Regeneration (GTR) procedures, such as membranes, bone substitute materials, and Autologous Platelet Concentrates (APCs), have been applied after surgical root canal treatment (SRCT), which produce different outcomes. This study aimed to evaluate the impact of regenerative procedures on the healing process following SRCT.
Methods: A comprehensive search of PubMed, Embase, Scopus, Cochrane, and the Web of Science found Randomized Controlled Trials (RCTs) published until February 25, 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!