While ruthenium tris(diimine) complexes have been extensively studied, this is not the case with ruthenium bis(diimine)X(2) complexes where X represents a pyridinyl-based ligand. The synthesis of a new complex ([2][PF(6)](2)) bearing two ambident Schiff base ligands (HL) constituted by the assembly of phenol and pyridinyl moieties is reported. Thanks to the heteroditopic property of HL, compound [2](2+) was used as an original metalloligand for the coordination of a redox-active (Mn(III)) and redox-inactive (Zn(II)) second metal cation affording three heterodinuclear complexes, namely, [(bpy)(2)Ru(2)Mn(acac)][PF(6)](2) ([3][PF(6)](2); acac = acetylacetonate), [(bpy)(2)Ru(2)Mn(OAc)][PF(6)](2) ([4][PF(6)](2), OAc = acetate), and [(bpy)(2)Ru(2)Zn][PF(6)](2) ([5][PF(6)](2)). The influence of the second metal with regard to the photophysical and electrochemical properties of the ruthenium bis(diimine)X(2) subunit was then investigated. In the case of Ru(II)-Mn(III) heterodinuclear complexes, a partial quenching of the luminescence was observed as a consequence of an efficient electron transfer process from the ruthenium to the manganese. EPR and spectrophotometric analyses of the oxidized species resulting from the one-electron oxidation of compounds [3](2+) and [4](2+) showed the formation of a Mn(IV) species for [3](2+) and an organic free radical for [4](2+).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c003276j | DOI Listing |
Dalton Trans
July 2024
Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
Electron-rich pyridines with π donor groups at the position play an important role as nucleophiles in organocatalysis, but their ligand properties and utilization in coordination chemistry have received little attention. Herein, we report the synthesis of two electron-rich pyridines 1 and 2 bearing N-heterocyclic imine groups at the position and explore their coordination chemistry. Experimental and computational methods were used to assess the donor ability of the new pyridines showing that they are stronger donors than aminopyridines and guanidinyl pyridines, and that the nature of the N-heterocyclic backbone has a strong influence on the pyridine donor strength.
View Article and Find Full Text PDFChemistry
July 2022
Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), 180001, Canal Road, Jammu, Jammu & Kashmir, India.
Described are the diverse reactivities of novel, stable, ambident thio-organocesium reagents (bearing electron withdrawing groups) against benzynes. Reactions at reflux temperature predominantly led to the generation of various functionalized stable sulfonium ylides and at 40 °C the same reaction underwent direct c-arylation. Furthermore, lack of internal hydrogen on the cesium reagent helped to produce different ortho-bifunctional arynes in both the reactions.
View Article and Find Full Text PDFJ Am Chem Soc
September 2021
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Azoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds.
View Article and Find Full Text PDFOrg Lett
September 2021
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
A method for regioselective ring openings of 3,4- and 2,3-epoxy alcohols with ambident nitrogen heterocycles is described. Using a diarylborinic acid catalyst, a single regioisomer is favored in couplings of nucleophile and electrophile partners that display low regioselectivity under conventional conditions. The method provides access to aromatic heterocycles bearing stereochemically defined, functionalized alkyl substituents, a product class similar in structure to medicinally relevant compounds such as the acyclic nucleoside analogues.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, 117997, Moscow, Russian Federation.
We propose a new concept of the triple role of protic ionic liquids with nucleophilic anions: a) a regenerable solvent, b) a Brønsted acid inducing diverse transformations via general acid catalysis, and c) a source of a nucleophile. The efficiency of this strategy was demonstrated using thiocyanate-based protic ionic liquids for the ring-opening of donor-acceptor cyclopropanes. A wide variety of activated cyclopropanes were found to react with 1-methylimidazolium thiocyanate under mild metal-free conditions via unusual nitrogen attack of the ambident thiocyanate ion on the electrophilic center of the three-membered ring affording pyrrolidine-2-thiones bearing donor and acceptor substituents at the C(5) and C(3) atoms, respectively, in a single time-efficient step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!