A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. | LitMetric

Recent rapid growth of lipidomics is mainly attributed to technological advances in mass spectrometry. Development of soft ionization techniques, in combination with computational tools, has spurred subsequent development of various methods for lipid analysis. However, none of these existing approaches can cover major cellular lipids in a single run. Here we demonstrate that a single method of liquid chromatography coupled with mass spectrometry (LCMS) can be used for simultaneous profiling of major cellular lipids including glycerophospholipids (PLs), sphingolipids (SPLs), waxes, sterols (ST) and mono-, di- as well as triacylglycerides (MAG, DAG, TAG). We applied this approach to analyze these lipids in various organisms including Saccharomyces cerevisiae and Schizosaccharomyces pombe. While phospholipids and triacylglycerides of S. pombe mainly contain 18 : 1 fatty acyls, those of S. cerevisiae contain 16 : 1, 16 : 0 and 18 : 1 fatty acyls. S. cerevisiae and S. pombe contain distinct sphingolipid profiles. S. cerevisiae has abundant inositol phytoceramides (IPC), while S. pombe contains high levels of free phytoceramides as well as short chain phytoceramides (t18:1/20 : 0-B) and IPC (t18:1/20 : 0-B). In S. cerevisiae, our results demonstrated accumulation of ergosterol esters in tgl1Delta cells and accumulation of various TAG species in tgl3Delta cells, which are consistent with the function of the respective enzymes. Furthermore, we, for the first time, systematically characterized lipids in S. pombe and measured their dynamic changes in Deltaplh1Deltadga1 cells at different growth phases. We further discussed dynamic changes of phospholipids, sphingolipids and neutral lipids in the progress of programmed cell death in Deltaplh1Deltadga1 cells of S. pombe.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b913353dDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
liquid chromatography
8
chromatography coupled
8
coupled mass
8
saccharomyces cerevisiae
8
cerevisiae schizosaccharomyces
8
schizosaccharomyces pombe
8
major cellular
8
cellular lipids
8
fatty acyls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!