INTRODUCTION: Chronic methamphetamine use results in persistent neuropsychological deficits in abstinent methamphetamine dependent (AMD) subjects. We examined the hypothesis that elevated concentration of cerebral glutamate (Glu), an excitatory neurotransmitter and neurotoxin, occurs in human AMD. MATERIALS AND METHODS: We examined 40 subjects, 18 of whom were AMD, abstinent more than 3 weeks and 22 were age matched controls. A Structured Clinical Interview was applied to exclude AMD with comorbid depression. We used TE-Averaged technique of MRS to uniquely identify and quantify the glutamate resonance at 2.35 ppm on a 3T clinical MR scanner. Statistics, including Bonferroni correction for multiple MRS variables were applied. RESULTS: Glu was significantly higher in frontal white matter of AMD (+19%, P = 0.01) and N-acetylaspartate (NAA), an axonal marker, was lower (-14%, P = 0.004). No significant MRS abnormalities were detected in posterior gray matter. Significant correlations were observed between NAA and Glu (P = 0.002 for AMD and P = 0.06 for controls in the posterior gray matter and P = 0.01 for controls and not significant for AMD in the frontal white matter). CONCLUSION: Our results demonstrate a significant excess of glutamate in frontal white matter of AMD subjects and offer support for the hypothesis that methamphetamine abuse may exert its long-term neuro-toxicity via glutamate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872246 | PMC |
http://dx.doi.org/10.4137/sart.s4625 | DOI Listing |
Nutrients
January 2025
Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.
Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.
J Neurodev Disord
January 2025
Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, No 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.
View Article and Find Full Text PDFBrain Lang
January 2025
Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA. Electronic address:
Introduction: Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States.
White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease (AD). Despite their frequent appearance and their association with cognitive decline in AD, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched cognitively intact controls.
View Article and Find Full Text PDFBrain Commun
January 2025
Queensland Aphasia Research Centre, University of Queensland, Brisbane 4029, Australia.
The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!