Aims: We investigated whether taurine indirectly protects neurons under hypoxia by affecting retinal Müller cells, which are known to play important roles in the regulation of retinal glutamate content.
Methods: Retinal cells isolated from rats were exposed to hypoxia for 24 h. We evaluated the retinal neuron survival, glutamate content in cultures with and without taurine under hypoxic conditions. The glutamate clearance function correlated with the expression of glutamine synthetase (GS) mRNA and L-glutamate/L-aspartate transporter (GLAST) mRNA. Immunohistochemical staining of glial fibrillary acidic protein (GFAP), vimentin and S-100 protein was performed to examine cytoskeletal changes in retinal Müller cells.
Results: Retinal neurons treated with taurine exhibited significantly higher survival rates than those without taurine under hypoxia. Taurine inhibited the upregulation of GFAP and vimentin, and inhibited the downregulation of GLAST, GS and the nuclear-cytoplasmic ratio of S-100 under hypoxia. In addition, taurine inhibited the upregulation of the glutamate content in neurons and retinal Müller cells upon hypoxic exposure.
Conclusion: These data suggest that hypoxic damage to cultured retinal cells is decreased by taurine. The neuroprotection by taurine may relate to buffering glutamate homeostasis via modulation of the glutamate clearance by retinal Müller cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000312818 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!