Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of approximately 600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919732 | PMC |
http://dx.doi.org/10.1093/nar/gkq413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!