Recently, evidence of linkage of schizophrenia to chromosome 13q22-q34 has been demonstrated in multiple studies. Based on structure and function, EFNB2 may be considered as a compelling candidate gene for schizophrenia on chromosome 13q33. We genotyped three single-nucleotide polymorphisms (SNPs: rs9520087, rs11069646, and rs8000078) in this region in 846 Han Chinese subjects (477 cases and 369 controls). Significant association between an allele of marker rs9520087 and schizophrenia was found. Furthermore, since no LD was observed in the three SNPs linkage disequilibrium estimation, all three SNPs were used in multiple SNPs haplotype analysis, and a strongly significant difference was found for the common haplotype TTC. Overall our findings indicate that EFNB2 gene may be a candidate susceptibility gene for schizophrenia in the Han Chinese population, and also provide further support for the potential importance of the NMDA receptor pathway in the etiology of schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psychres.2010.04.037DOI Listing

Publication Analysis

Top Keywords

schizophrenia chromosome
8
gene schizophrenia
8
han chinese
8
three snps
8
schizophrenia
5
efnb2 locus
4
locus associated
4
associated schizophrenia?
4
schizophrenia? single
4
single nucleotide
4

Similar Publications

HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia.

Int J Mol Sci

January 2025

State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.

HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia.

View Article and Find Full Text PDF

Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.

View Article and Find Full Text PDF

Objective: Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders.

Methods: Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ ( = 301) or BD ( = 211) and a healthy control group (HC, = 378).

View Article and Find Full Text PDF

In studies of individuals of primarily European genetic ancestry, common and low-frequency variants and rare coding variants have been found to be associated with the risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for individuals of other genetic ancestries or the role of rare non-coding variants in BD and SZ risk. We performed whole genome sequencing of African American individuals: 1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study).

View Article and Find Full Text PDF

Background: Chromosome 3q29 duplication syndrome is a rare chromosomal disorder with a frequency of 1:5000 in patients with a neurodevelopmental phenotype. The syndrome is characterized by phenotypic polymorphism and reduced penetrance.

Methods: Patients were investigated by performing a cytogenetic analysis of GTG-banded metaphases, aCGH with the SurePrint G3 Human CGH Microarray 8×60K, qPCR, FISH, and WES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!