A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. | LitMetric

The use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response. Detergent-free OMV vaccines retain all LPS, which preserves the native vesicle structure, but result in high toxicity and lower yield. The present study assessed the effects of gene mutations that attenuated LPS toxicity (lpxL1) or improved OMV yield (rmpM) in combination with the available OMV purification processes. The results substantiate that OMVs from a strain with both mutations, produced with a detergent-free process provide better vaccine characteristics than the traditional detergent-based approach. With comparable toxicity and yield, no aggregation and cross-protection against other PorA subtypes, these OMV vaccines are potentially safe and effective for parenteral use in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2010.04.082DOI Listing

Publication Analysis

Top Keywords

improved omv
8
omv vaccines
8
omv vaccine
4
vaccine neisseria
4
neisseria meningitidis
4
meningitidis genetically
4
genetically engineered
4
engineered strains
4
strains detergent-free
4
detergent-free purification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!