Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: The prognosis of herpes simplex encephalitis (HSE) remains poor despite available antiviral treatment. Matrix metalloproteinase-9 (MMP-9) is currently considered to play a major role in promoting cerebrovascular complications which contribute to the high mortality and morbidity of HSE. We hypothesize that temporally knockdown MMP-9 expression in early phase of HSE might be an effective treatment strategy.
Methods: The animal models of herpes simplex encephalitis were established by intracerebrally inoculated herpes simplex virus type 1 (HSV-1) in mice. Mice were inoculated intracerebrally with MMP-9 targeting siRNA (MMP-9 siRNA). MMP-9 expression was assessed by RT-PCR and western blot analysis at 3 and 7 days after HSV-1 infected. The blood-brain barrier (BBB) permeability was quantitated by Evans blue dye extravasations and brain water content. Immunohistochemistry method was adopted to analyse the expression of AQP4 protein. Quantitative real-time PCR analysis was used to detect cytokines expression. Neurological score was quantified using an established neurological scale at 7 days after HSE.
Results: Using synthetic small interfering RNA, we found a single intracerebral injection of siRNA targeting murine MMP-9 mRNA (MMP-9 siRNA) silenced MMP-9 expression and reduced it to normal level at day 7 post-infection. The improvement in neurological function and increased cumulative survival reflected the functional consequence of this therapy. MMP-9 knockdown mice also displayed less uptake of Evans blue and reduced brain water content compared with control siRNA-treated group. Also the HSV-1-induced upregulation of proinflammatory cytokines was significantly diminished in MMP-9 siRNA-treated mice. In addition, aquaporin-4 expression in perivascular decreased in MMP-9 siRNA-treated mice and might contribute to the protection of blood-brain barrier.
Discussion: This compelling evidence suggests that MMP-9 is a key pathogenic factor within HSE, and local injection of synthetic siRNA in the brain could knock down MMP-9 expression in acute phase of HSE, reduce brain edema and improves mice neurological function and increase cumulative survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/016164110X12644252260556 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!