Simultaneous automatic control of oxygen and carbon dioxide blood gases during cardiopulmonary bypass.

Artif Organs

Department of Biomedical Engineering, School of Medicine, Ruhr University, Bochum, Germany.

Published: June 2010

In this work an automatic control strategy is presented for the simultaneous control of oxygen and carbon dioxide blood gas partial pressures to be used during cardiopulmonary bypass surgery with heart-lung machine support. As the exchange of blood gases in the artificial extracorporeal lung is a highly nonlinear process comprising varying time delays, uncertainties, and time-varying parameters, it is currently being controlled manually by specially trained perfusionist staff. The new control strategy includes a feedback linearization routine with augmented time-delay compensation and two external linear gain-scheduled controllers, for partial oxygen and carbon dioxide pressures. The controllers were robustly tuned and tested in simulations with a detailed artificial lung (oxygenator) model in cardiopulmonary bypass conditions. Furthermore, the controllers were implemented in an ex vivo experiment using fresh porcine blood as a substitute fluid and a special deoxygenation technique to simulate a patient undergoing cardiopulmonary bypass. Both controllers showed robust stability during the experiments and a good disturbance rejection to extracorporeal blood flow changes. This automatic control strategy is proposed to improve patient's safety by fast control reference tracking and good disturbance rejection under varying conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2009.00890.xDOI Listing

Publication Analysis

Top Keywords

cardiopulmonary bypass
16
automatic control
12
oxygen carbon
12
carbon dioxide
12
control strategy
12
control oxygen
8
dioxide blood
8
blood gases
8
good disturbance
8
disturbance rejection
8

Similar Publications

Purpose: To measure and validate elevated succinate in brain during circulatory arrest in a piglet model of cardiopulmonary bypass.

Methods: Using data from an archive of 3T H MR spectra acquired in previous in-magnet studies, dynamic plots of succinate, spectral simulations and difference spectra were generated for analysis and validation.

Results: Elevation of succinate during circulatory arrest was observed and validated.

View Article and Find Full Text PDF

We report a 75-year-old female with a history of two heart operations: aortic valve replacement (St. Jude Medical 21 mm) at the age of 44 years for severe rheumatic aortic stenosis and mitral valve replacement (Carbomedics 29 mm) at the age of 51 years for rheumatic mitral regurgitation. Decades later, she presented with exertional dyspnea.

View Article and Find Full Text PDF

Introduction The study aimed to retrospectively evaluate the early patient outcome and left ventricular function after mitral valve replacement with a tilting disc valve and total preservation. Patients and methods This retrospective observational study includes patients who underwent mitral valve replacement using a tilting disc valve with total preservation of mitral valvular and subvalvular apparatus from July 2021 to August 2022 at a single center. Results The data were reviewed retrospectively for age, sex, comorbidities, operating time, aortic cross-clamp time, cardiopulmonary bypass time, preoperative and postoperative left ventricular ejection fraction, mean gradient across the mitral valve, left ventricular diameter, left atrial size, atrial fibrillation, complications, mortality, and early patient outcome.

View Article and Find Full Text PDF

Background: Acute type A aortic dissection (A-AAD) with severe acute aortic regurgitation (AR) and coronary involvement is a potentially fatal condition that causes left ventricular volume overload and catastrophic acute myocardial infarction. We present the successful management of a patient using Impella 5.5 following cardiopulmonary arrest caused by A-AAD with severe acute AR and left main trunk (LMT) obstruction.

View Article and Find Full Text PDF

Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!