Fungal exposure may elicit a number of pulmonary diseases in man, including allergic asthma. Fungal sensitization is linked to asthma severity, although the basis for this increased pathology remains ambiguous. To create conditions simulating environmental fungal allergen exposure in a human, nose-only inhalation delivery of Aspergillus fumigatus conidia was employed in mice previously sensitized to Aspergillus antigen extract. BALB/c mice were immunized with subcutaneous and intraperitoneal injections of soluble A. fumigatus extract in alum, which was followed by three intranasal inoculations of the same fungal antigens dissolved in saline to elicit global sensitization in a manner similar to other published models. The animals were then challenged with a 10-min inhaled dose of live conidia blown directly from the surface of a mature A. fumigatus culture. After a single challenge with inhaled A. fumigatus conidia, allergic pulmonary inflammation and airway hyperresponsiveness were significantly increased above that of either naïve animals or animals that had been sensitized to A. fumigatus antigens but not challenged with conidia. The architecture of the lung was changed by inhalation of conidia when compared to controls in that there were significant increases in epithelial thickness, goblet cell metaplasia, and peribronchial collagen deposition. Additionally, α-smooth muscle actin staining of histological sections showed visual evidence of increased peribronchial smooth muscle mass after fungal challenge. In summary, the delivery of live A. fumigatus conidia to the sensitized airways of BALB/c mice advances the study of the pulmonary response to fungi by providing a more natural route of exposure and, for the first time, demonstrates the consistent development of fibrosis and smooth muscle changes accompanying exposure to inhaled fungal conidia in a mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113699PMC
http://dx.doi.org/10.3109/13693786.2010.485582DOI Listing

Publication Analysis

Top Keywords

fumigatus conidia
16
balb/c mice
12
aspergillus fumigatus
8
conidia
8
conidia sensitized
8
smooth muscle
8
fumigatus
7
fungal
6
inhalation
4
inhalation model
4

Similar Publications

Background: In patients with chronic obstructive pulmonary disease (COPD), a sensitization to A. fumigatus has been related to a decline in lung function, but the role of fungal agents in the disease pathogenesis remains unclear. The main purpose of the present study was to investigate whether cell inflammation could worsen after exposure to A.

View Article and Find Full Text PDF

The mRNA-binding protein KSRP (KH-type splicing regulatory protein) is known to modulate immune cell functions post-transcriptionally, e.g., by reducing the mRNA stability of cytokines.

View Article and Find Full Text PDF

is the etiologic agent of invasive aspergillosis, a life- threatening fungal pneumonia that is initiated by the inhalation of conidia (spores) into the lung. If the conidia are not cleared, they secrete large quantities of hydrolytic enzymes and toxins as they grow, resulting in extensive damage to pulmonary tissue. Stromal fibroblasts are central responders to tissue damage in many organs, but their functional response to pulmonary injury caused by has not been explored.

View Article and Find Full Text PDF

The conserved protein DopA is required for growth, drug tolerance and virulence in Aspergillus fumigatus.

World J Microbiol Biotechnol

December 2024

Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

The majority of Aspergillus fumigatus reproduction occurs asexually, with large numbers of conidiophores producing small hydrophobic conidia dispersed aerially. When healthy hosts inhale conidia, the mucosal cilia and phagocytosis by the innate immune system can remove them. However, in immunocompromised hosts, the conidia are not removed, which allows them to germinate, forming mycelium that invades host tissues and causes disease.

View Article and Find Full Text PDF

Due to the high morbidity and mortality rates of invasive aspergillosis (IA) and the importance of early IA detection for successful treatment and subsequent outcome, this study aimed to determine a time course of detectable antigen in a mouse model of IA and correlate it with tissue invasion by using two novel monoclonal antibodies, 1D2 and 4E4, that can be used to detect the -derived glycoproteins. Immunocompromised mice were randomly divided into five groups: uninfected control, and inoculation with conidia from , , and . Conidia (2 × 10 cells/mL) were administered intravenously via tail vein injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!