Extrinsic spin Hall effect from first principles.

Phys Rev Lett

Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany.

Published: May 2010

We present an ab initio description of the spin Hall effect in metals. Our approach is based on density functional theory in the framework of a fully relativistic Korringa-Kohn-Rostoker method and the solution of a linearized Boltzmann equation including the scattering-in term (vertex corrections). The skew scattering mechanism at substitutional impurities is considered. Spin-orbit coupling in the host as well as at the impurity atom and the influence of spin-flip processes are fully taken into account. A sign change of the spin Hall effect in Cu and Au hosts is obtained as a function of the impurity atom, and even light elements like Li can cause a strong effect. It is shown that the gigantic spin Hall effect in Au can be caused by skew scattering at C and N impurities which are typical contaminations in a vacuum chamber.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.186403DOI Listing

Publication Analysis

Top Keywords

spin hall
16
skew scattering
8
impurity atom
8
extrinsic spin
4
hall
4
hall principles
4
principles initio
4
initio description
4
description spin
4
hall metals
4

Similar Publications

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Chiral effects at the metal center in Fe(III) spin crossover coordination salts.

J Phys Condens Matter

December 2024

Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.

Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.

View Article and Find Full Text PDF

Using a full-wave theory to analyze the light beam scattering at sharp interfaces, we reexamine the anomalous spin-orbit interaction (SOI) around the Fresnel coefficient (FC) singularities. We evaluate the spin-dependent beam shifts near the singularity for three typical optical interfaces, comparing our results with existing ones. Existing theories neglect the contribution of the wave vector component near the FC singularities, potentially leading to erroneous results.

View Article and Find Full Text PDF

Topologically Protected Vortex Knots in an Experimentally Realizable System.

Phys Rev Lett

December 2024

QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.

Ordered media often support vortex structures with intriguing topological properties. Here, we investigate non-Abelian vortices in tetrahedral order using the mathematical formalism of colored links. Due to the generality of our methods, the results apply to all physical systems governed by tetrahedral order, such as the cyclic phase of spin-2 Bose-Einstein condensates and the tetrahedratic phase of bent-core nematic liquid crystals.

View Article and Find Full Text PDF

Orbital Current Pumping From Ultrafast Light-driven Antiferromagnetic Insulator.

Adv Mater

December 2024

Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!