Clustering of charged inertial particles in turbulence.

Phys Rev Lett

Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA.

Published: May 2010

Holographic measurements of the clustering of electrically charged, inertial particles in homogenous and isotropic turbulent flow reveal novel particle dynamics. When particles are identically charged, Coulomb repulsion introduces a length scale below which inertial clustering is suppressed such that the radial distribution function (RDF) mimics that of a nonideal gas. The result is described with a Fokker-Planck framework modeling inertial clustering as a diffusion-drift process modified to include Coulomb interaction. The peak in the RDF is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged "drift" velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The resulting functional form of the RDF matches the measurements closely, providing support for the drift-diffusion description of particle clustering.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.184505DOI Listing

Publication Analysis

Top Keywords

charged inertial
8
inertial particles
8
coulomb repulsion
8
inertial clustering
8
clustering
5
clustering charged
4
inertial
4
particles turbulence
4
turbulence holographic
4
holographic measurements
4

Similar Publications

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Advances in Single Particle Mass Analysis.

Mass Spectrom Rev

December 2024

Institut de Recherche Interdisciplinaire de Grenoble (IRIG), CEA, Grenoble, France.

Single particle mass analysis methods allow the measurement and characterization of individual nanoparticles, viral particles, as well as biomolecules like protein aggregates and complexes. Several key benefits are associated with the ability to analyze individual particles rather than bulk samples, such as high sensitivity and low detection limits, and virtually unlimited dynamic range, as this figure of merit strictly depends on analysis time. However, data processing and interpretation of single particle data can be complex, often requiring advanced algorithms and machine learning approaches.

View Article and Find Full Text PDF

Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes.

Ultrason Sonochem

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:

Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.

View Article and Find Full Text PDF

Triboelectric-Inertial Sensing Glove Enhanced by Charge-Retained Strategy for Human-Machine Interaction.

Adv Sci (Weinh)

November 2024

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.

As technology advances, human-machine interaction (HMI) demands more intuitive and natural methods. To meet this demand, smart gloves, capable of capturing intricate hand movements, are emerging as vital HMI tools. Moreover, triboelectric-based sensors, with their self-powered, cost-effective, and material various characteristics, can offer promising solutions for enhancing existing glove systems.

View Article and Find Full Text PDF

Smartphones store valuable personal information, necessitating robust authentication methods to protect user data. This research proposes a lightweight bi-model fallback authentication technique that combines dynamic security questions and finger pattern recognition using inertial measurement units. The dynamic security questions are generated based on the smartphone's usage behavior, while the owner's finger movements are captured using four different inertial sensors: accelerometer, gyroscope, gravity sensor, and magnetometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!