We report the results of a next-to-leading order simulation of top quark pair production in association with two jets. With our inclusive cuts, we show that the corrections with respect to leading order are negative and small, reaching 11%. The error obtained by scale variation is of the same order. Additionally, we reproduce the result of a previous study of top quark pair production in association with a single jet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.104.162002 | DOI Listing |
Eur Phys J C Part Fields
January 2025
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
High Energy Theory Group, Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
We present results from a complete next-to-leading order (NLO) calculation of e^{+}e^{-}→ZH in the standard model effective field theory (SMEFT) framework, including all contributions from dimension-six operators. At NLO, there are novel dependencies on CP violating parameters in the gauge sector, on modifications to the Higgs boson self-couplings, on alterations to the top quark Yukawa couplings, and on four-fermion operators involving the electron and the top quark, among others. We show that including only the logarithms resulting from renormalization group scaling can produce misleading results, and further, we explicitly demonstrate the constraining power of combining measurements from different energy scales.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
The Institute of Mathematical Sciences, Taramani, 600113 Chennai, India.
Phys Rev Lett
November 2024
Università degli Studi di Milano-Bicocca and INFN, Piazza della Scienza 3, 20216 Milano, Italy.
Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is a powerful tool for resolving the quark flavor decomposition of the proton's spin structure. We present the full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS experiments.
View Article and Find Full Text PDFEur Phys J C Part Fields
November 2024
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Unlabelled: Matching conditions are universal ingredients that describe how fragmentation functions change when heavy-flavour thresholds are crossed during the factorisation scale evolution. They are the last missing piece for a consistent description of observables with identified final-state hadrons at next-to-next-to leading order accuracy in quantum chromodynamics. We present an analytical form of the matching condition for light-flavour to hadron fragmentation function at next-to-next-to leading order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!