Instabilities of non-abelian vortices in dense QCD.

Phys Rev Lett

Theoretical Physics Laboratory, RIKEN, Saitama 351-0198, Japan.

Published: April 2010

We construct a low-energy effective theory describing non-abelian vortices in the color superconducting quark matter under stress. We demonstrate that all the vortices are radically unstable against decay into the only one type of vortices due to the potential term induced by the explicit flavor symmetry breaking by the strange quark mass. A simple analytical estimate for the lifetime of unstable vortices is provided under the controlled weak-coupling calculations. We briefly discuss the (non)existence of magnetic monopoles at high density.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.161601DOI Listing

Publication Analysis

Top Keywords

non-abelian vortices
8
vortices
5
instabilities non-abelian
4
vortices dense
4
dense qcd
4
qcd construct
4
construct low-energy
4
low-energy effective
4
effective theory
4
theory describing
4

Similar Publications

Topologically Protected Vortex Knots in an Experimentally Realizable System.

Phys Rev Lett

December 2024

QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.

Ordered media often support vortex structures with intriguing topological properties. Here, we investigate non-Abelian vortices in tetrahedral order using the mathematical formalism of colored links. Due to the generality of our methods, the results apply to all physical systems governed by tetrahedral order, such as the cyclic phase of spin-2 Bose-Einstein condensates and the tetrahedratic phase of bent-core nematic liquid crystals.

View Article and Find Full Text PDF

Demonstrating the non-Abelian Ising anyon statistics of Majorana zero modes in a physical platform still represents a major open challenge in physics. We here show that the linear low-frequency charge conductance of a Majorana interferometer containing a floating superconducting island can reveal the topological spin of quantum edge vortices. The latter are associated with chiral Majorana fermion edge modes and represent "flying" Ising anyons.

View Article and Find Full Text PDF

Non-Abelian Anyons in Periodically Driven Abelian Spin Liquids.

Phys Rev Lett

July 2024

Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstraße 36, 10623 Berlin.

We show that non-Abelian anyons can emerge from an Abelian topologically ordered system subject to local time-periodic driving. This is illustrated with the toric-code model, as the canonical representative of a broad class of Abelian topological spin liquids. The Abelian anyons in the toric code include fermionic and bosonic quasiparticle excitations which see each other as π fluxes; namely, they result in the accumulation of a π phase if wound around each other.

View Article and Find Full Text PDF
Article Synopsis
  • Triplet superconductivity is gaining attention due to the potential discovery of unique phenomena like Majorana modes and chiral currents, especially in strongly correlated systems.
  • Scanning tunneling microscopy has revealed an unusual charge-density-wave (CDW) order in UTe, a heavy-fermion triplet superconductor, which diminishes in intensity with increasing magnetic field strength.
  • Researchers developed a Ginzburg-Landau theory to explain this CDW's behavior, linking it to underlying triplet pair-density-wave states, and highlighting its relevance to understanding UTe's superconducting properties.
View Article and Find Full Text PDF

Topological superconducting vortex from trivial electronic bands.

Nat Commun

February 2023

Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.

Superconducting vortices are promising traps to confine non-Abelian Majorana quasi-particles. It has been widely believed that bulk-state topology, of either normal-state or superconducting ground-state wavefunctions, is crucial for enabling Majorana zero modes in solid-state systems. This common belief has shaped two major search directions for Majorana modes, in either intrinsic topological superconductors or trivially superconducting topological materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!