Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as subgraphs with a larger density of internal connections than of external links. In this work, we define a measure aimed at quantifying the statistical significance of single communities. Extreme and order statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.046110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!