The jamming transition of an isotropically compressed granular packing is studied by means of molecular dynamics simulations. The system is shown to undergo a critical transition which is analyzed by looking at the topological structure of the force network. At the critical packing fraction there is a sudden growth of the number of polygons in the network. Above the critical packing fraction the number of triangles keeps growing while the number of the rest of polygons is weakly reduced. Then, we prove that in the jammed regime, there is a linear relationship between the number of triangles and the coordination number. Furthermore, the presence of these minimal structures is revealed to be connected with the evolution of some important topological properties, suggesting its importance to understand the physical properties of the packing and the onset of rigidity during the compression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.041302 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.
View Article and Find Full Text PDFEur Heart J Acute Cardiovasc Care
January 2025
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
Background: Closing the evidence-practice gap for the treatment of acute coronary syndrome (ACS) is central to improving quality of care. Under the European Society of Cardiology (ESC) framework, we aimed to develop updated quality indicators (QIs) for the evaluation of quality of care and outcomes for patients with ACS.
Methods: A Working Group of experts including members of the ESC Clinical Practice Guidelines Task Force for ACS, Acute CardioVascular Care Association and European Association of Percutaneous Cardiovascular Interventions followed the ESC methodology for QI development.
Langmuir
January 2025
Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!