Catalytic asymmetric synthesis of R207910.

J Am Chem Soc

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Published: June 2010

The first asymmetric synthesis of a very promising antituberculosis drug candidate, R207910, was achieved by developing two novel catalytic transformations; a catalytic enantioselective proton migration and a catalytic diastereoselective allylation of an intermediate alpha-chiral ketone. Using 2.5 mol % of a Y-catalyst derived from Y(HMDS)(3) and the new chiral ligand 9, 1.25 mol % of p-methoxypyridine N-oxide (MEPO), and 0.5 mol % of Bu(4)NCl, alpha-chiral ketone 3 was produced from enone 4 with 88% ee. This reaction proceeded through a catalytic chiral Y-dienolate generation via deprotonation at the gamma-position of 4, followed by regio- and enantioselective protonation at the alpha-position of the resulting dienolate. Preliminary mechanistic studies suggested that a Y: 9: MEPO = 2: 3: 1 ternary complex was the active catalyst. Bu(4)NCl markedly accelerated the reaction without affecting enantioselectivity. Enantiomerically pure 3 was obtained through a single recrystallization. The second key catalytic allylation of ketone 3 was promoted by CuF.3PPh(3).2EtOH (10 mol %) in the presence of KO(t)Bu (15 mol %), ZnCl(2) (1 equiv), and Bu(4)PBF(4) (1 equiv), giving the desired diastereomer 2 in quantitative yield with a 14: 1 ratio without any epimerization at the alpha-stereocenter. It is noteworthy that conventional organometallic addition reactions did not produce the desired products due to the high steric demand and a fairly acidic alpha-proton in substrate ketone 3. This first catalytic asymmetric synthesis of R207910 includes 12 longest linear steps from commercially available compounds with an overall yield of 5%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja103183rDOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
12
catalytic asymmetric
8
synthesis r207910
8
alpha-chiral ketone
8
catalytic
7
mol
5
r207910 asymmetric
4
synthesis promising
4
promising antituberculosis
4
antituberculosis drug
4

Similar Publications

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

Asymmetric synthesis presents many challenges, with the selective formation of chiral bridged polyheterocycles being a notable example. Cycloadditions using bicyclo[1.1.

View Article and Find Full Text PDF

The first asymmetric total synthesis of the tetraterpenoid (+)-7,7'-bistaxodione () via a unique late-stage electrochemical oxidative dimerization of a diterpenoid quinone methide tumor Inhibitor (+)-taxodione () has been described. The naturally occurring monomer was synthesized from aromatic abietane diterpenoid, ferruginol (1e) . Further, an efficient convergent synthetic route toward the naturally occurring aromatic abietane terpenoids has been shown via a Lewis acid-mediated diastereoselective cationic epoxy-ene cyclization.

View Article and Find Full Text PDF

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

Asymmetric Functionalization Harnessing Radical-Mediated Functional-Group Migration.

Angew Chem Int Ed Engl

January 2025

Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, 200240, Shanghai, CHINA.

Along with the renaissance of radical chemistry, the past decade has witnessed rapid development in radical-mediated rearrangement reactions. A wide diversity of radical approaches harnessing functional-group migration (FGM) have been devised to enhance both synthetic efficiency and molecular complexity. However, the application of FGM reactions to construct stereogenic centers remains underexplored owing to the inherent challenges of asymmetric radical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!