Objective: To examine the expression of Osterix (Osx) mRNA and protein after application of mechanical force on human periodontal ligament cells (HPDLCs), and to investigate the role of Osx in orthodontic alveolar bone remodeling.
Methods: HPDLCs were isolated and cultured in vitro with explant method. Approximately 2.5 x 10(5) cells were seeded onto six-well cell culture plates and then were exposed to centrifugal force for 1, 2, 4, 6, 8 or 12 h at 631 r x min(-1). The expression of Osx mRNA and protein was measured by reverse transcription-polymerase chain raction (RT-PCR) and Western blot respectively. Immunofluorescence assay was used to detect the expression and subcellular At the initial time point, Osx mRNA had a weak exlocalization of Osx protein by green fluorescence.
Results: pression and protein was not detected. Under the mechanical stimulation, both mRNA and protein levels of Osx were upregulated in a time-dependent manner. Furthermore, Osx protein was translocated gradually from the cytosol into the cell nuclei.
Conclusion: The expression and activation of Osx were enhanced by mechanical stress in HPDLCs, which indicates that Osx may play an important role in HPDLCs osteogenic differentiation and periodontal tissue remodeling induced by mechanical stress.
Download full-text PDF |
Source |
---|
Biochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFElife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.
Objective: To screen novel biomarkers for sepsis.
Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.
Cancer Res
January 2025
Tsinghua University, Beijing, China.
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and lacks effective therapeutic options. Cancer cells frequently become more dependent on splicing factors than normal cells due to increased rates of transcription. Terminal uridylyltransferase 1 (TUT1) is a specific terminal uridylyltransferase for U6 small nuclear RNA (snRNA), which plays a catalytic role in the spliceosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!